BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1β forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations. 
                        more » 
                        « less   
                    This content will become publicly available on April 1, 2026
                            
                            Chewing-Activated TRPV4/PIEZO1– HIF-1α –Zn Axes in a Rat Periodontal Complex
                        
                    
    
            The upstream mechanobiological pathways that regulate the downstream mineralization rates in periodontal tissues are limitedly understood. Herein, we spatially colocalized and correlated compression and tension strain profiles with the expressions of mechanosensory ion channels (MS-ion) TRPV4 and PIEZO1, biometal zinc, mitochondrial function marker (MFN2), cell senescence indicator (p16), and oxygen status marker hypoxia-inducible factor-1α (HIF-1α) in rats fed hard and soft foods. The observed zinc and related cellular homeostasis in vivo were ascertained by TRPV4 and PIEZO1 agonists and antagonists on human periodontal ligament fibroblasts ex vivo. Four-week-old male Sprague-Dawley rats were fed hard (n= 3) or soft (n= 3) foods for 4 wk (in vivo). Significant changes in alveolar socket and root shapes with decreased periodontal ligament space and increased cementum volume fraction were observed in maxillae on reduced loads (soft food). Reduced loads impaired distally localized compression-stimulated PIEZO1 and mesially localized tension-stimulated TRPV4, decreased mitochondrial function (MFN2), and increased cell senescence in mesial and distal periodontal regions. The switch inHIF-1αfrom hard food–distal to soft food–mesial indicated a plausible effect of shear-regulated blood and oxygen flows in the periodontal complex. Blunting or activating TRPV4 or PIEZO1 MS-ion channels by channel-specific antagonists or agonists in human periodontal ligament fibroblast cultures (in vitro) indicated a positive correlation between zinc levels and zinc transporters but not with MS-ion channel expressions. The effects of reduced chewing loads in vivo were analogous to TRPV4 and PIEZO1 antagonists in vitro. Study results collectively illustrated that tension-induced TRPV4 and compression-induced PIEZO1 activations are necessary for cell metabolism. An increased hypoxic state with reduced functional loads can be a conducive environment for cementum growth. From a practical standpoint, dose rate–controlled loads can modulate tension and compression-specific MS-ion channel activation, cellular zinc, andHIF-1αtranscription. These mechanobiochemical events indicate the plausible catalytic role of biometal zinc in mineralization, periodontal maintenance, and dentoalveolar joint function. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152260
- PAR ID:
- 10609807
- Publisher / Repository:
- PubMed Central
- Date Published:
- Journal Name:
- Journal of Dental Research
- Volume:
- 104
- Issue:
- 4
- ISSN:
- 0022-0345
- Page Range / eLocation ID:
- 398 to 407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression in vivo. However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell–cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma.more » « less
- 
            Abstract Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease.more » « less
- 
            The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.more » « less
- 
            This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
