skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 15, 2026

Title: Resilient and Sustainable Water Resources Management in the United States: The Role of Water‐Use Data and Interagency Knowledge Exchange
ABSTRACT The United States SECURE Water Act states that a study of water use is critical for assessing impacts on water and ecological resources and forecasting whether or not available surface and groundwater supplies will meet future needs. The United States Geological Survey (USGS) plays a key role in the SECURE Water Act by providing nationally consistent information on water quantity, quality, and use. Water‐use data maintained by States and Territories are critical for the USGS water‐use estimation and modeling techniques that underlie these efforts. However, water‐use data availability has not been systematically assessed. This study addresses this gap through a survey of USGS Water Science Centers (WSCs). The results indicate that water‐use information varies in its content and level of detail across the United States. Spatially discrete and comprehensive information about water use, such as site‐specific consumptive use, withdrawals, diversions, return flows, and interbasin transfers, is not widely available to and/or shared between State and Territory water‐resource agencies and USGS WSCs. This article presents the survey results and discusses reported barriers to water‐use data availability and sharing, as well as potential implications of limited water‐use information. This study advances understanding of water‐use data availability and sharing and contributes to broader research on US water data governance.  more » « less
Award ID(s):
1828902
PAR ID:
10610001
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
JAWRA Journal of the American Water Resources Association
Volume:
61
Issue:
3
ISSN:
1093-474X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Water quality parameters such as dissolved oxygen and turbidity play a key role in policy decisions regarding the maintenance and use of the nation's major bodies of water. In particular, the United States Geological Survey (USGS) maintains a massive suite of sensors throughout the nation's waterways that are used to inform such decisions, with all data made available to the public. However, the corresponding measurements are regularly corrupted due to sensor faults, fouling, and decalibration, and hence USGS scientists are forced to spend costly time and resources manually examining data to look for anomalies. We present a method of automatically detecting such events using supervised machine learning. We first present an extensive study of which water quality parameters can be reliably predicted, using support vector machines and gradient boosting algorithms for regression. We then show that the trained predictors can be used to automatically detect sensor decalibration, providing a system that could be easily deployed by the USGS to reduce the resources needed to maintain data fidelity. 
    more » « less
  2. Abstract We provide a dataset of irrigation water withdrawals by crop, county, year, and water source within the United States. We employ a framework we previously developed to establish a companion dataset to our original estimates. The main difference is that we now use the U.S. Geological Survey (USGS) variable ‘irrigation — total’ to partition PCR-GLOBWB 2 hydrology model estimates, instead of ‘irrigation — crop’ as used in previous estimates. Our findings for Surface Water Withdrawals (SWW), total Groundwater Withdrawals (GWW), and nonrenewable Groundwater Depletion (GWD) are similar to those of prior estimates but now have better spatial coverage, since several states are missing from the USGS ‘irrigation — crop’ variable that was originally used. Irrigation water use increases in this study, since more states are included and ‘irrigation — total’ includes more categories of irrigation than ‘irrigation — crop’. Notably, irrigation in the Mississippi Embayment Aquifer is now captured for rice and soy. We provide nearly 2.5 million data points with this paper (3,142 counties; 13 years; 3 water sources; and 20 crops). 
    more » « less
  3. Abstract Interbasin water transfers (IBTs) can have a significant impact on the environment, water availability, and economies within the basins importing and exporting water, as well as basins downstream of these water transfers. The lack of comprehensive data identifying and describing IBTs inhibits understanding of the role IBTs play in supplying water for society, as well as their collective hydrologic impact. We develop three connected datasets inventorying IBTs in the United States and Canada, including their features, geospatial details, and water transfer volumes. We surveyed the academic and gray literature, as well as local, state, and federal water agencies, to collect, process, and verify IBTs in Canada and the United States. Our comprehensive IBT datasets represent all known transfers of untreated water that cross subregion (US) or subdrainage area (CA) boundaries, characterizing a total of 641 IBT projects. The infrastructure-level data made available by these data products can be used to close water budgets, connect water supplies to water use, and better represent human impacts within hydrologic and ecosystem models. 
    more » « less
  4. Abstract In the United States, greater attention has been given to developing water supplies and quantifying available waters than determining who uses water, how much they withdraw and consume, and how and where water use occurs. As water supplies are stressed due to an increasingly variable climate, changing land‐use, and growing water needs, greater consideration of the demand side of the water balance equation is essential. Data about the spatial and temporal aspects of water use for different purposes are now critical to long‐term water supply planning and resource management. We detail the current state of water‐use data, the major stakeholders involved in their collection and applications, and the challenges in obtaining high‐quality nationally consistent data applicable to a range of scales and purposes. Opportunities to improve access, use, and sharing of water‐use data are outlined. We cast a vision for a world‐class national water‐use data product that is accessible, timely, and spatially detailed. Our vision will leverage the strengths of existing local, state, and federal agencies to facilitate rapid and informed decision‐making, modeling, and science for water resources. To inform future decision‐making regarding water supplies and uses, we must coordinate efforts to substantially improve our capacity to collect, model, and disseminate water‐use data. 
    more » « less
  5. Abstract Water security is tightly connected with the food security, ecological health, and economic prosperity of a region. In this study, a comprehensive water security assessment based on water footprint concepts from 1995 to 2015 was performed for the counties located in the Contiguous States of the Unites States. The availability of blue water (e.g., surface water) is comparatively less in the western river basins, and most of the rainfed agricultural lands in the eastern United States were characterized by the lower levels of green water (e.g., root zone soil moisture) storage. This integrated assessment of the water security indicators can directly map the critical regions and reveal the dependence between human water consumption, crop water requirements and environmental flow. This analysis can be further extended to incorporate climate change and extreme drought events to inform specific locations (e.g., counties and watersheds) at which problems of water conflict are more likely to occur. 
    more » « less