skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome
Abstract Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.  more » « less
Award ID(s):
1942313
PAR ID:
10610091
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Molecular Ecology
Date Published:
Journal Name:
Molecular Ecology
Volume:
33
Issue:
21
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extravagant ornaments are thought to signal male quality to females choosing mates, but the evidence linking ornament size to male quality is controversial, particularly in cases in which females prefer different ornaments in different populations. Here, we use whole-genome sequencing and transcriptomics to determine the genetic basis of ornament size in two populations of a widespread warbler, the common yellowthroat ( Geothlypis trichas ). Within a single subspecies, females in a Wisconsin population prefer males with larger black masks as mates, while females in a New York population prefer males with larger yellow bibs. Despite being produced by different pigments in different patches on the body, the size of the ornament preferred by females in each population was linked to numerous genes that function in many of the same core aspects of male quality (e.g., immunity and oxidative balance). These relationships confirm recent hypotheses linking the signaling function of ornaments to male quality. Furthermore, the parallelism in signaling function provides the flexibility for different types of ornaments to be used as signals of similar aspects of male quality. This could facilitate switches in female preference for different ornaments, a potentially important step in the early stages of divergence among populations. 
    more » « less
  2. Abstract Elaborate, sexually dimorphic traits are widely thought to evolve under sexual selection through female preference, male–male competition, or both. The orangethroat darter (Etheostoma spectabile) is a sexually dichromatic fish in which females exhibit no preferences for male size or coloration. We tested whether these traits affect individual reproductive success inE. spectabilewhen multiple males are allowed to freely compete for a female. The quality and quantity of male coloration were associated with greater success in maintaining access to the female and in spawning as the primary male (first male to participate). On the other hand, sneaking behavior showed little correlation with coloration. Male breeding coloration inE. spectabilemay therefore demonstrate how intrasexual competition can be a predominant factor underlying the evolution of male ornaments. 
    more » « less
  3. Rapid divergence and subsequent reoccurring patterns of gene flow can complicate our ability to discern phylogenetic relationships among closely related species. To what degree such patterns may differ across the genome can provide an opportunity to extrapolate better how life history constraints may influence species boundaries. By exploring differences between autosomal and Z (or X) chromosomal-derived phylogenetic patterns, we can better identify factors that may limit introgression despite patterns of incomplete lineage sorting among closely related taxa. Here, using a whole-genome resequencing approach coupled with an exhaustive sampling of subspecies within the recently divergent prairie grouse complex (genus: Tympanuchus), including the extinct Heath Hen (T. cupido cupido), we show that their phylogenomic history differs depending on autosomal or Z-chromosome partitioned SNPs. Because the Heath Hen was allopatric relative to the other prairie grouse taxa, its phylogenetic signature should not be influenced by gene flow. In contrast, all the other extant prairie grouse taxa, except Attwater’s Prairie-chicken (T. c. attwateri), possess overlapping contemporary geographic distributions and have been known to hybridize. After excluding samples that were likely translocated prairie grouse from the Midwest to the eastern coastal states or their resulting hybrids with mainland Heath Hens, species tree analyses based on autosomal SNPs consistently identified a paraphyletic relationship with regard to the Heath Hen with Lesser Prairie-chicken (T. pallidicinctus) sister to Greater Prairie-chicken (T. c. pinnatus) regardless of genic or intergenic partitions. In contrast, species trees based on the Z-chromosome were consistent with Heath Hen sister to a clade that included its conspecifics, Greater and Attwater’s Prairie-chickens (T. c. attwateri). These results were further explained by historic gene flow, as shown with an excess of autosomal SNPs shared between Lesser and Greater Prairie-chickens but not with the Z-chromosome. Phylogenetic placement of Sharp-tailed Grouse (T. phasianellus), however, did not differ among analyses and was sister to a clade that included all other prairie grouse despite low levels of autosomal gene flow with Greater Prairie-chicken. These results, along with strong sexual selection (i.e., male hybrid behavioral isolation) and a lek breeding system (i.e., high variance in male mating success), are consistent with a pattern of female-biased introgression between prairie grouse taxa with overlapping geographic distributions. Additional study is warranted to explore how genomic components associated with the Z-chromosome influence the phenotype and thereby impact species limits among prairie grouse taxa despite ongoing contemporary gene flow. 
    more » « less
  4. Abstract Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera. 
    more » « less
  5. Abstract Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. InDrosophilahybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation inDrosophila willistoniand analyse the patterns of transcriptome divergence between two allopatrically evolvedD. willistonisubspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue‐specific. Despite no indication for cell‐type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo‐ and the ancestral arms of theD. willistoni Xchromosome. Compared to the autosomes, theXchromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue‐level portrait of transcriptome differentiation between recently divergedD. willistonisubspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation. 
    more » « less