skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942313

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Genomic projections of (mal)adaptation under future climate change, known as genomic offset, faces limited application due to challenges in validating model predictions. Individuals inhabiting regions with high genomic offset are expected to experience increased levels of physiological stress as a result of climate change, but documenting such stress can be challenging in systems where experimental manipulations are not possible. One increasingly common method for documenting physiological costs associated with stress in individuals is to measure the relative length of telomeres—the repetitive regions on the caps of chromosomes that are known to shorten at faster rates in more adverse conditions. Here we combine models of genomic offsets with measures of telomere shortening in a migratory bird, the yellow warbler (Setophaga petechia), and find a strong correlation between genomic offset, telomere length and population decline. While further research is needed to fully understand these links, our results support the idea that birds in regions where climate change is happening faster are experiencing more stress and that such negative effects may help explain the observed population declines. 
    more » « less
  2. Abstract Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration. 
    more » « less
  3. Abstract A prominent challenge for managing migratory species is the development of conservation plans that accommodate spatiotemporally varying distributions throughout the year. Migratory networks are spatially‐explicit models that incorporate migratory assignment and seasonal abundance data to define patterns of connectivity between stages of the annual cycle. These models are particularly useful for widespread application because different types of migratory data can be used to quantify individual and population‐level movement across the annual cycle of migratory species. While there are clear benefits of combining migratory assignment and abundance data for the development of conservation strategies, there is a concurrent need for corresponding user‐friendly software to facilitate the integration of these data for conservation.Here, we presentmignette(migratory network tools ensemble), an R package for developing migratory network models to estimate network connectivity among migratory populations. We demonstrate the functionality ofmignettewith three empirical examples that highlight the use of different types of tracking data for migratory assignment.mignettefacilitates the modelling of migratory networks by providing R functions to: (1) define breeding and nonbreeding nodes, (2) assemble abundance and assignment data and (3) model the migratory network. Additionally,mignetteprovides R functions to visualize modelled migratory networks.With increasing availability of migratory assignment and abundance data,mignetterepresents a valuable tool for developing effective conservation strategies for migratory species. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Abstract Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Abstract Understanding migratory connectivity, or the linkage of populations between seasons, is critical for effective conservation and management of migratory wildlife. A growing number of tools are available for understanding where migratory individuals and populations occur throughout the annual cycle. Integration of the diverse measures of migratory movements can help elucidate migratory connectivity patterns with methodology that accounts for differences in sampling design, directionality, effort, precision and bias inherent to each data type.The R packageMigConnectivitywas developed to estimate population‐specific connectivity and the range‐wide strength of those connections. New functions allow users to integrate intrinsic markers, tracking and long‐distance reencounter data, collected from the same or different individuals, to estimate population‐specific transition probabilities (estTransition) and the range‐wide strength of those transition probabilities (estStrength). We used simulation and real‐world case studies to explore the challenges and limitations of data integration based on data from three migratory bird species, Painted Bunting (Passerina ciris), Yellow Warbler (Setophaga petechia) and Bald Eagle (Haliaeetus leucocephalus), two of which had bidirectional data.We found data integration is useful for quantifying migratory connectivity, as single data sources are less likely to be available across the species range. Furthermore, accurate strength estimates can be obtained from either breeding‐to‐nonbreeding or nonbreeding‐to‐breeding data. For bidirectional data, integration can lead to more accurate estimates when data are available from all regions in at least one season.The ability to conduct combined analyses that account for the unique limitations and biases of each data type is a promising possibility for overcoming the challenge of range‐wide coverage that has been hard to achieve using single data types. The best‐case scenario for data integration is to have data from all regions, especially if the question is range‐wide or data are bidirectional. Multiple data types on animal movements are becoming increasingly available and integration of these growing datasets will lead to a better understanding of the full annual cycle of migratory animals. 
    more » « less
  6. Abstract Tracking climatic conditions throughout the year is often assumed to be an adaptive behaviour underlying seasonal migration patterns in animal populations. We investigate this hypothesis using genetic markers data to map migratory connectivity for 27 genetically distinct bird populations from 7 species. We found that the variation in seasonal climate tracking across our suite of populations at a continental scale is more likely a consequence, rather than a direct driver, of migratory connectivity, which is primarily shaped by energy efficiency—i.e., optimizing the balance between accessing available resources and movement costs. However, our results also suggest that regional‐scale seasonal precipitation tracking affects population migration destinations, thus revealing a potential scale dependency of ecological processes driving migration. Our results have implications for the conservation of these migratory species under climate change, as populations tracking climate seasonally are potentially at higher risk if they adapt to a narrow range of climatic conditions. 
    more » « less
  7. Abstract Low‐coverage whole‐genome sequencing (WGS) is increasingly used for the study of evolution and ecology in both model and non‐model organisms; however, effective application of low‐coverage WGS data requires the implementation of probabilistic frameworks to account for the uncertainties in genotype likelihoods.Here, we present a probabilistic framework for using genotype likelihoods for standard population assignment applications. Additionally, we derive the Fisher information for allele frequency from genotype likelihoods and use that to describe a novel metric, theeffective sample size, which figures heavily in assignment accuracy. We make these developments available for application through WGSassign, an open‐source software package that is computationally efficient for working with whole‐genome data.Using simulated and empirical data sets, we demonstrate the behaviour of our assignment method across a range of population structures, sample sizes and read depths. Through these results, we show that WGSassign can provide highly accurate assignment, even for samples with low average read depths (<0.01X) and among weakly differentiated populations.Our simulation results highlight the importance of equalizing the effective sample sizes among source populations in order to achieve accurate population assignment with low‐coverage WGS data. We further provide study design recommendations for population assignment studies and discuss the broad utility of effective sample size for studies using low‐coverage WGS data. 
    more » « less
  8. Abstract Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene–environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics‐informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world. 
    more » « less
  9. Abstract Conservation units (CUs) are an essential tool for maximizing evolutionary potential and prioritizing areas across a species’ range for protection when implementing conservation and management measures. However, current workflows for identifying CUs on the basis of neutral and adaptive genomic variation largely ignore information contained in patterns of isolation by distance (IBD), frequently the primary signal of population structure in highly mobile taxa, such as birds, bats, and marine organisms with pelagic larval stages. While individuals located on either end of a species’ distribution may exhibit clear genetic, phenotypic, and ecological differences, IBD produces subtle changes in allele frequencies across space, making it difficult to draw clear boundaries for conservation purposes in the absence of discrete population structure. Here, we highlight potential pitfalls that arise when applying common methods for delineating CUs to continuously distributed organisms and review existing methods for detecting subtle breakpoints in patterns of IBD that can indicate barriers to gene flow in highly mobile taxa. In addition, we propose a new framework for identifying CUs in all organisms, including those characterized by continuous genomic differentiation, and suggest several possible ways to harness the information contained in patterns of IBD to guide conservation and management decisions. 
    more » « less
  10. Abstract Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation‐by‐distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation‐by‐distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl. 
    more » « less