skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What Can Mechanisms Underlying Derived Traits Tell Us About the Evolution of Social Behavior?
Abstract Social behavior, although rare, is a highly successful form of living that has reached its most extreme forms in eusocial insects. A tractable framework to understand social evolution is the study of major transitions in social behavior. This includes the transitions between solitary to social living, from species exhibiting intermediate degrees of sociality to species exhibiting true sociality, and from primitive to advanced eusocial species. The latter transition is characterized by the emergence of traits not previously found in primitive eusocial species, such as fixed morphological differences between castes and task specialization within the sterile caste. Such derived traits appear to exist in a binary fashion, present in advanced eusocial species, and absent or rare in primitive ones, and thus do not exist in a gradient that is easily tracked and compared between species. Thus, they may not be viewed as valuable to explore ultimate questions related to social evolution. Here, we argue that derived traits can provide useful insights on social evolution even if they are absent or rare in species with a lower social organization. This applies only if the mechanism underlying the trait, rather than the function it regulates for, can be traced back to the solitary ancestors. We discuss two examples of derived traits, morphological differences in female castes and primer pheromones regulating female reproduction, demonstrating how their underlying mechanisms can be used to understand major transitions in the evolution of social behavior and emphasize the importance of studying mechanistic, rather than functional continuity of traits.  more » « less
Award ID(s):
1942127
PAR ID:
10610209
Author(s) / Creator(s):
; ;
Editor(s):
Sun, Qian “Karen”
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Annals of the Entomological Society of America
Volume:
114
Issue:
5
ISSN:
0013-8746
Page Range / eLocation ID:
547 to 561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social insects have provided some of the clearest insights into the origins and evolution of collective behaviour. Over 20 years ago, Maynard Smith and Szathmáry defined the most complex form of insect social behaviour—superorganismality—among the eight major transitions in evolution that explain the emergence of biological complexity. However, the mechanistic processes underlying the transition from solitary life to superorganismal living in insects remain rather elusive. An overlooked question is whether this major transition arose via incremental or step-wise modes of evolution. We suggest that examination of the molecular processes underpinning different levels of social complexity represented across the major transition from solitary to complex sociality can help address this question. We present a framework for using molecular data to assess to what extent the mechanistic processes that take place in the major transition to complex sociality and superorganismality involve nonlinear (implying step-wise evolution) or linear (implying incremental evolution) changes in the underlying molecular mechanisms. We assess the evidence for these two modes using data from social insects and discuss how this framework can be used to test the generality of molecular patterns and processes across other major transitions. This article is part of a discussion meeting issue ‘Collective behaviour through time’. 
    more » « less
  2. Abstract Insects have evolved remarkably complex social systems. Social wasps are particularly noteworthy because they display gradations in social behaviors. Here, we sequence the genomes of two highly diverged Vespula wasps, V. squamosa and V. maculifrons Buysson (Hymenoptera: Vespidae), to gain greater insight into the evolution of sociality. Both V. squamosa and V. maculifrons are social wasps that live in large colonies characterized by distinct queen and worker castes. However, V. squamosa is a facultative social parasite, and V. maculifrons is its frequent host. We found that the genomes of both species were ~200 Mbp in size, similar to the genome sizes of congeneric species. Analyses of gene expression from members of different castes and developmental stages revealed similarities in expression patterns among immature life stages. We also found evidence of DNA methylation within the genome of both species by directly analyzing DNA sequence reads. Moreover, genes that were highly and uniformly expressed were also relatively highly methylated. We further uncovered evidence of differences in patterns of molecular evolution in the two taxa, consistent with V. squamosa exhibiting alterations in evolutionary pressures associated with its facultatively parasitic or polygyne life history. Finally, rates of gene evolution were correlated with variation in gene expression between castes and developmental stages, as expected if more highly expressed genes were subject to stronger levels of selection. Overall, this study expands our understanding of how social behavior relates to genome evolution in insects. 
    more » « less
  3. Abstract Season length and its associated variables can influence the expression of social behaviors, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favor the emergence and maintenance of a social strategy, while shorter seasons favor a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well-matched to the natural history and behavior of two flexibly-eusocial bee species, suggesting our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behavior and its evolution and underscores the need for further models that explicitly incorporate such variation to study evolutionary trajectories of eusociality. 
    more » « less
  4. null (Ed.)
    ABSTRACT In social insects, changes in behavior are often accompanied by structural changes in the brain. This neuroplasticity may come with experience (experience-dependent) or age (experience-expectant). Yet, the evolutionary relationship between neuroplasticity and sociality is unclear, because we know little about neuroplasticity in the solitary relatives of social species. We used confocal microscopy to measure brain changes in response to age and experience in a solitary halictid bee (Nomia melanderi). First, we compared the volume of individual brain regions among newly emerged females, laboratory females deprived of reproductive and foraging experience, and free-flying, nesting females. Experience, but not age, led to significant expansion of the mushroom bodies – higher-order processing centers associated with learning and memory. Next, we investigated how social experience influences neuroplasticity by comparing the brains of females kept in the laboratory either alone or paired with another female. Paired females had significantly larger olfactory regions of the mushroom bodies. Together, these experimental results indicate that experience-dependent neuroplasticity is common to both solitary and social taxa, whereas experience-expectant neuroplasticity may be an adaptation to life in a social colony. Further, neuroplasticity in response to social chemical signals may have facilitated the evolution of sociality. 
    more » « less
  5. Season length and its associated variables can influence the expression of social behaviours, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favour the emergence and maintenance of a social strategy, while shorter seasons favour a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well matched to the natural history and behaviour of two flexibly eusocial bee species, suggesting that our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behaviour and its evolution and it underscores the need for further models that explicitly incorporate such variation to study the evolutionary trajectories of eusociality. 
    more » « less