The minimization of nonlower semicontinuous functions is a difficult topic that has been minimally studied. Among such functions is a Heaviside composite function that is the composition of a Heaviside function with a possibly nonsmooth multivariate function. Unifying a statistical estimation problem with hierarchical selection of variables and a sample average approximation of composite chance constrained stochastic programs, a Heaviside composite optimization problem is one whose objective and constraints are defined by sums of possibly nonlinear multiples of such composite functions. Via a pulled-out formulation, a pseudostationarity concept for a feasible point was introduced in an earlier work as a necessary condition for a local minimizer of a Heaviside composite optimization problem. The present paper extends this previous study in several directions: (a) showing that pseudostationarity is implied by (and thus, weaker than) a sharper subdifferential-based stationarity condition that we term epistationarity; (b) introducing a set-theoretic sufficient condition, which we term a local convexity-like property, under which an epistationary point of a possibly nonlower semicontinuous optimization problem is a local minimizer; (c) providing several classes of Heaviside composite functions satisfying this local convexity-like property; (d) extending the epigraphical formulation of a nonnegative multiple of a Heaviside composite function to a lifted formulation for arbitrarily signed multiples of the Heaviside composite function, based on which we show that an epistationary solution of the given Heaviside composite program with broad classes of B-differentiable component functions can in principle be approximately computed by surrogation methods. Funding: The work of Y. Cui was based on research supported by the National Science Foundation [Grants CCF-2153352, DMS-2309729, and CCF-2416172] and the National Institutes of Health [Grant 1R01CA287413-01]. The work of J.-S. Pang was based on research supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0045].
more »
« less
This content will become publicly available on January 16, 2026
Variational Theory and Algorithms for a Class of Asymptotically Approachable Nonconvex Problems
We investigate a class of composite nonconvex functions, where the outer function is the sum of univariate extended-real-valued convex functions and the inner function is the limit of difference-of-convex functions. A notable feature of this class is that the inner function may fail to be locally Lipschitz continuous. It covers a range of important, yet challenging, applications, including inverse optimal value optimization and problems under value-at-risk constraints. We propose an asymptotic decomposition of the composite function that guarantees epi-convergence to the original function, leading to necessary optimality conditions for the corresponding minimization problem. The proposed decomposition also enables us to design a numerical algorithm such that any accumulation point of the generated sequence, if it exists, satisfies the newly introduced optimality conditions. These results expand on the study of so-called amenable functions introduced by Poliquin and Rockafellar in 1992, which are compositions of convex functions with smooth maps, and the prox-linear methods for their minimization. To demonstrate that our algorithmic framework is practically implementable, we further present verifiable termination criteria and preliminary numerical results. Funding: Financial support from the National Science Foundation Division of Computing and Communication Foundations [Grant CCF-2416172] and Division of Mathematical Sciences [Grant DMS-2416250] and the National Cancer Institute, National Institutes of Health [Grant 1R01CA287413-01] is gratefully acknowledged.
more »
« less
- PAR ID:
- 10610279
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper is devoted to the study of the second-order variational analysis of spectral functions. It is well-known that spectral functions can be expressed as a composite function of symmetric functions and eigenvalue functions. We establish several second-order properties of spectral functions when their associated symmetric functions enjoy these properties. Our main attention is given to characterize parabolic regularity for this class of functions. It was observed recently that parabolic regularity can play a central rule in ensuring the validity of important second-order variational properties, such as twice epi-differentiability. We demonstrates that for convex spectral functions, their parabolic regularity amounts to that of their symmetric functions. As an important consequence, we calculate the second subderivative of convex spectral functions, which allows us to establish second-order optimality conditions for a class of matrix optimization problems.more » « less
-
In this paper, we introduce new relaxations for the hypograph of composite functions assuming that the outer function is supermodular and concave extendable. Relying on a recently introduced relaxation framework, we devise a separation algorithm for the graph of the outer function over P, where P is a special polytope to capture the structure of each inner function using its finitely many bounded estimators. The separation algorithm takes [Formula: see text] time, where d is the number of inner functions and n is the number of estimators for each inner function. Consequently, we derive large classes of inequalities that tighten prevalent factorable programming relaxations. We also generalize a decomposition result and devise techniques to simultaneously separate hypographs of various supermodular, concave-extendable functions using facet-defining inequalities. Assuming that the outer function is convex in each argument, we characterize the limiting relaxation obtained with infinitely many estimators as the solution of an optimal transport problem. When the outer function is also supermodular, we obtain an explicit integral formula for this relaxation.more » « less
-
In this paper, we propose AdaBB, an adaptive gradient method based on the Barzilai-Borwein stepsize. The algorithm is line-search-free and parameter-free, and it essentially provides a convergent variant of the Barzilai-Borwein method for general convex optimization problems. We analyze the ergodic convergence of the objective function value and the convergence of the iterates for solving general convex optimization problems. Compared with existing works along this line of research, our algorithm gives the best lower bounds on the stepsize and the average of the stepsizes. Furthermore, we present extensions of the proposed algorithm for solving locally strongly convex and composite convex optimization problems where the objective function is the sum of a smooth function and a nonsmooth function. In the case of local strong convexity, we achieve linear convergence. Our numerical results also demonstrate very promising potential of the proposed algorithms on some representative examples. Funding: S. Ma is supported by the National Science Foundation [Grants DMS-2243650, CCF-2308597, CCF-2311275, and ECCS-2326591] and a startup fund from Rice University. J. Yang is supported by the National Natural Science Foundation of China [Grants 12431011 and 12371301] and the Natural Science Foundation for Distinguished Young Scholars of Gansu Province [Grant 22JR5RA223].more » « less
-
Subgradient methods comprise a fundamental class of nonsmooth optimization algorithms. Classical results show that certain subgradient methods converge sublinearly for general Lipschitz convex functions and converge linearly for convex functions that grow sharply away from solutions. Recent work has moreover extended these results to certain nonconvex problems. In this work, we seek to improve the complexity of these algorithms by asking the following question. Is it possible to design a superlinearly convergent subgradient method? We provide a positive answer to this question for a broad class of sharp semismooth functions. Funding: The research of D. Davis was supported by the Division of Mathematical Sciences [Grant 2047637] and the Alfred P. Sloan Foundation.more » « less
An official website of the United States government
