skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frictional Behavior of the Southern San Andreas Fault Reveals Ability to Host Shallow Slow Slip Events
Abstract The southern San Andreas fault is in its interseismic period, occasionally releasing some stored elastic strain during triggered slow slip events (SSEs) at <2.5 km depth. A distinct, shallowly exhumed gouge defines the fault and is present at SSE depths. To evaluate if this material can host SSEs, we characterize its mineralogy, microstructures, and frictional behavior with water‐saturated deformation experiments near‐in situ conditions, and we compare laboratory healing rates to natural SSEs. Our results show that slip localizes along clay surfaces in both laboratory and natural settings. The gouge is weak (coefficient of friction of ∼0.29), exhibits low healing rates (<0.001/decade), and transitions from unstable to stable behavior at slip rates above ∼1 μm/s. Healing rate and friction drop data from laboratory instabilities are comparable to geodetically‐constrained values for SSEs. Collective observations indicate this gouge could host shallow SSEs and/or localize slip facilitating dynamic rupture propagation to the surface.  more » « less
Award ID(s):
2225216 2054439
PAR ID:
10610293
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Geophysical Research Letters
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Establishing a constitutive law for fault friction is a crucial objective of earthquake science. However, the complex frictional behavior of natural and synthetic gouges in laboratory experiments eludes explanations. Here, we present a constitutive framework that elucidates the rate, state, and temperature dependence of fault friction under the relevant sliding velocities and temperatures of the brittle lithosphere during seismic cycles. The competition between healing mechanisms, such as viscoelastic collapse, pressure‐solution creep, and crack sealing, explains the low‐temperature stability transition from steady‐state velocity‐strengthening to velocity‐weakening as a function of slip‐rate and temperature. In addition, capturing the transition from cataclastic flow to semi‐brittle creep accounts for the stabilization of fault slip at elevated temperatures. We calibrate the model using extensive laboratory data on synthetic albite and granite gouge, and on natural samples from the Alpine Fault and the Mugi Mélange in the Shimanto accretionary complex in Japan. The constitutive model consistently explains the evolving frictional response of fault gouge from room temperature to 600°C for sliding velocities ranging from nanometers to millimeters per second. The frictional response of faults can be uniquely determined by the in situ lithology and the prevailing hydrothermal conditions. 
    more » « less
  2. The empirical rate‐ and state‐dependent friction law is widely used to explain the frictional resistance of rocks. However, the constitutive parameters vary with temperature and sliding velocity, preventing extrapolation of laboratory results to natural conditions. Here, we explain the frictional properties of natural gouge from the San Andreas Fault, Alpine Fault, and the Nankai Trough from room temperature to ∼300°C for a wide range of slip‐rates with constant constitutive parameters by invoking the competition between two healing mechanisms with different thermodynamic properties. A transition from velocity‐strengthening to velocity‐weakening at steady‐state can be attained either by decreasing the slip‐rate or by increasing temperature. Our study provides a framework to understand the physics underlying the slip‐rate and state dependence of friction and the dependence of frictional properties on ambient physical conditions. 
    more » « less
  3. Deformation experiments on hematite characterize its slip‐rate dependent frictional properties and deformation mechanisms. These data inform interpretations of slip behavior from exhumed hematite‐coated faults and present‐day deformation at depth. We used a rotary‐shear apparatus to conduct single‐velocity and velocity‐step experiments on polycrystalline specular hematite rock (∼17 μm average plate thickness) at slip rates of 0.85 μm/s to 320 mm/s, displacements of primarily 1–3 cm and up to 45 cm, and normal stresses of 5 and 8.5 MPa. The average coefficient of friction is 0.70; velocity‐step experiments indicate velocity‐strengthening to velocity‐neutral behavior at rates <1 mm/s. Scanning electron microscopy showed experimentally generated faults develop in a semi‐continuous, thin layer of red hematite gouge. Angular gouge particles have an average diameter of ∼0.7 μm, and grain size reduction during slip yields a factor of 10–100 increase in surface area. Hematite is amenable to (U‐Th)/He thermochronometry, which can quantify fault‐related thermal and mechanical processes. Comparison of hematite (U‐Th)/He dates from the undeformed material and experimentally produced gouge indicates He loss occurs during comminution at slow deformation rates without an associated temperature rise required for diffusive loss. Our results imply that, in natural fault rocks, deformation localizes within coarse‐grained hematite by stable sliding, and that hematite (U‐Th)/He dates acquired from ultracataclasite or highly comminuted gouge reflect minor He loss unrelated to thermal processes. Consequently, the magnitude of temperature rise and associated thermal resetting in hematite‐bearing fault rocks based on (U‐Th)/He thermochronometry may be overestimated if only diffusive loss of He is considered. 
    more » « less
  4. The constitutive behavior of faults intervenes in virtually every aspect of the seismic phenomenon but is poorly understood, particularly regarding how effective normal stress affects the boundaries of the seismogenic zone. Here, we explore the mechanical properties of Pelona schist, Westerly granite, phyllosilicate‐rich gouge, gabbro, hornblende, lawsonite blueschist, montmorillonite, and smectite in hydrothermal conditions at various confining pressures and explain the laboratory observations with a physical model of fault friction. The thermobaric activation of healing and deformation mechanisms explains the boundaries of unstable slip as a function of slip‐rate, temperature, and effective normal stress for a given lithology. The constitutive law affords extrapolation of laboratory data in the conditions relevant to seismic cycles throughout the crust, explaining the focus of large earthquakes in collision, subduction, and continental and oceanic transform settings. 
    more » « less
  5. Seismic and geodetic observations show that slow slip events (SSEs) in subduction zones can happen at all temporal and spatial scales and propagate at various velocities. Observation of rapid tremor reversals indicates back‐propagating fronts traveling much faster than the main rupture front. Heterogeneity of fault properties, such as fault roughness, is a ubiquitous feature often invoked to explain this complex behavior, but how roughness affects SSEs is poorly understood. Here we use quasi‐dynamic seismic cycle simulations to model SSEs on a rough fault, using normal stress perturbations as a proxy for roughness and assuming rate‐and‐state friction, with velocity‐weakening friction at low slip rate and velocity‐strengthening at high slip rate. SSEs exhibit temporal clustering, large variations in rupture length and propagation speed, and back‐propagating fronts at different scales. We identify a mechanism for back propagation: as ruptures propagate through low‐normal stress regions, a rapid increase in slip velocity combined with rate‐strengthening friction induces stress oscillations at the rupture tip, and the subsequent “delayed stress drop” induces secondary back‐propagating fronts. Moreover, on rough faults with fractal elevation profiles, the transition from pulse to crack can also lead to the re‐rupture of SSEs due to local variations in the level of heterogeneity. Our study provides a possible mechanism for the complex evolution of SSEs inferred from geophysical observations and its link to fault roughness. 
    more » « less