skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Orbital Influences on Deep Ocean Oxygen Concentrations and Respired Carbon Storage
Quantitative records of bottom water oxygen (BWO) are critical for understanding deep ocean change through time. Because of the stoichiometric relationship between oxygen and carbon, BWO records provide insight into the physical and biogeochemical processes that control the air‐sea partitioning of both gases with important implications for climate over Quaternary glacial‐interglacial cycles. Here, we present new geochemical data sets from Ocean Discovery Program Site 1240 in the eastern equatorial Pacific to constrain paleoproductivity (Baxsflux) and BWO using a multiproxy approach (aU, Mn/Al, Δδ13C, and U/Ba). This combination of approaches allows us to quantitatively identify changes in BWO and to parse local and basin‐wide contributions to the signal. We find that upwelling, not dust input, is responsible for driving productivity changes at the site. Changes in local carbon export are not the primary driver of changes in BWO, which instead reflect basin‐wide changes driven by processes in the Southern Ocean. Our BWO results provide direct evidence for the role of orbital precession and obliquity in driving deep sea respired carbon and oxygen concentrations. We find variations in BWO on the order of ∼50 μmol/kg that occur with ∼23 kyr periodicity during the substages of Marine Isotope Stage 5, and variations of ∼100 μmol/kg on glacial‐interglacial timescales. These findings have important implications for the role of insolation in driving deep ocean respired oxygen and carbon concentrations, and point to physical and biogeochemical changes in the Southern Ocean as key drivers of planetary‐scale carbon change.  more » « less
Award ID(s):
2103000
PAR ID:
10610311
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Global Biogeochemical Cycles
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
39
Issue:
6
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reconstructing past oxygen fluctuations in oxygen minimum zones (OMZs) is crucial for understanding their response to climate change. Numerous studies suggest better oxygenation in the Arabian Sea OMZ during the Last Glacial Maximum (LGM) compared to the Holocene. However, bottom water oxygen (BWO) variability during the Penultimate Glacial Cycle (Marine Isotope Stage [MIS] 6 to MIS 5e, ∼140–115 ka B.P.) remains poorly constrained. This study reconstructs BWO variations during this period from sediment core TN041‐8JPC in the western Arabian Sea OMZ, utilizing proxies including benthic foraminiferal surface porosity, redox‐sensitive trace metal enrichment factors (e.g., UEF), and U/Ba ratios. Bottom water oxygen concentrations were 24.4 ± 5.9 μmol/kg during MIS 6 and 16.8 ± 6.5 μmol/kg during MIS 5e, with all proxies indicating higher BWO in MIS 6 than in MIS 5e. However, these proxies show different patterns within MIS 5e, indicating that UEFand U/Ba ratios may be limited to recording average BWO in glacial and interglacial (quasi)steady states. We propose that the intensified OMZ during MIS 5e, relative to MIS 6, was driven by higher productivity, temperature‐induced reductions in oxygen solubility, and reduced delivery of Southern‐sourced intermediate waters. In contrast, the intensified OMZ during the Holocene, compared to the LGM, was likely influenced by lower oxygen solubility, reduced Southern water delivery, and winter convective mixing rather than productivity. This study highlights a general trend of weaker OMZs in glacial than interglacial periods, though the mechanisms may not be identical, offering insights into OMZ dynamics under climate change in the past. 
    more » « less
  2. Key Points The glacial Arabian Sea oxygen minimum zone (OMZ) was slightly weaker but spanned the same depth range as modern Enhanced oxygen supply locally and/or from the Southern Ocean likely explained the weaker OMZ in the glacial Arabian Sea Bottom water oxygen in the deep glacial Arabian Sea ranged between 50 and 100 μmol/kg 
    more » « less
  3. Abstract The California Current Ecosystem (CCE) is a natural laboratory for studying the chemical and ecological impacts of ocean acidification. Biogeochemical variability in the region is due primarily to wind‐driven near‐shore upwelling of cold waters that are rich in re‐mineralized carbon and poor in oxygen. The coastal regions are exposed to surface waters with increasing concentrations of anthropogenic CO2(Canth) from exchanges with the atmosphere and the shoreward transport and mixing of upwelled water. The upwelling drives intense cycling of organic matter that is created through photosynthesis in the surface ocean and degraded through biological respiration in subsurface habitats. We used an extended multiple linear‐regression approach to determine the spatial and temporal concentrations of Canthand respired carbon (Cbio) in the CCE based on cruise data from 2007, 2011, 2012, 2013, 2016, and 2021. Over the region, the Canthaccumulation rate increased from 0.8 ± 0.1 μmol kg−1 yr−1in the northern latitudes to 1.1 ± 0.1 μmol kg−1 yr−1further south. The rates decreased to values of about ∼0.3 μmol kg−1 yr−1at depths near 300 m. These accumulation rates at the surface correspond to total pH decreases that averaged about 0.002 yr‐1; whereas, decreases in aragonite saturation state ranged from 0.006 to 0.011 yr‐1. The impact of the Canthuptake was to decrease the amount of oxygen consumption required to cross critical biological thresholds (i.e., calcification, dissolution) for marine calcifiers and are significantly lower in the recent cruises than in the pre‐industrial period because of the addition of Canth
    more » « less
  4. The distribution of dissolved iodine in seawater is sensitive to multiple biogeochemical cycles, including those of nitrogen and oxygen. The iodine-to-calcium ratio (I/Ca) of marine carbonates, such as bulk carbonate or foraminifera, has emerged as a potential proxy for changes in past seawater oxygenation. However, the utility of the I/Ca proxy in deep-sea corals, natural archives of seawater chemistry with wide spatial coverage and radiometric dating potential, remains unexplored. Here, we present the first I/Ca data obtained from modern deep-sea corals, specifically scleractinian and bamboo corals, collected from the Atlantic, Eastern Pacific, and Southern Oceans, encompassing a wide range of seawater oxygen concentrations (10–280 μmol/kg). In contrast to thermodynamic predictions, we observe higher I/Ca ratios in aragonitic corals (scleractinian) compared to calcitic corals (bamboo). This observation suggests a strong biological control during iodate incorporation into deep-sea coral skeletons. For the majority of scleractinian corals, I/Ca exhibits a covariation with local seawater iodate concentrations, which is closely related to seawater oxygen content. Scleractinian corals also exhibit notably lower I/Ca below a seawater oxygen threshold of approximately 160 μmol/kg. In contrast, no significant differences in I/Ca are found among bamboo corals across the range of oxygen concentrations encountered (15–240 μmol/kg). In the North Atlantic, several hydrographic factors, such as temperature and/or salinity, may additionally affect coral I/Ca. Our results highlight the potential of I/Ca ratios in deep-sea scleractinian corals to serve as an indicator of past seawater iodate concentrations, providing valuable insights into historical seawater oxygen levels. 
    more » « less
  5. null (Ed.)
    The prevailing hypothesis to explain pCO2 rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 μ mol/kg at the glacial maximum. Because respiration is coupled to δ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 μ mol/kg from carbon respiration would lower deep water δ13CDIC by ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of 14C in the deep sea. We show that Pacific Deep Water δ13CDIC did not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases in δ13CDIC, Δ14C, and ε14C that are not recorded in observations. 
    more » « less