skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 28, 2026

Title: New Insights into the Crustal Structure of the San Fernando Valley, California, from a Dense Nodal Seismic Array
Abstract The San Fernando Valley (SFV), a densely populated region in Southern California, has high earthquake hazard due to a complex network of active faults and the amplifying effects of the sedimentary basin. Since the devastating 1994 Mw 6.7 Northridge earthquake, numerous studies have examined its structure using various geological and geophysical datasets. However, current seismic velocity models still lack the resolution to accurately image the near-surface velocity structure and concealed or blind faults, which are critical for high-frequency wavefield simulations and earthquake hazard modeling. To address these challenges, we develop a 3D high-resolution shear-wave velocity model for the SFV using ambient noise data from a dense array of 140 seismic nodes and 10 Southern California Seismic Network stations. We also invert gravity data to map the basin geometry and integrate horizontal-to-vertical spectral ratios and aeromagnetic data to constrain interfaces and map major geological structures. With a lateral resolution of 250 m near the basin center, our model reveals previously unresolved geological features, including the detailed geometry of the basin and previously unmapped structure of faults at depth. The basin deepens from the Santa Monica Mountains in the south to approximately 4 km near its center and 7 km in the Sylmar sub-basin at the basin’s northern margin. Strong velocity contrasts are observed across major faults, at the basin edges, and in the basin’s upper 500 m, for which we measure velocities as low as 200 m/s. Our high-resolution model will enhance ground-motion simulations and earthquake hazard assessments for the SFV and has implications for other urban areas with high seismic risk.  more » « less
Award ID(s):
2225216 2317154 2105320
PAR ID:
10610326
Author(s) / Creator(s):
;
Publisher / Repository:
Seismological Research Letters
Date Published:
Journal Name:
Seismological Research Letters
ISSN:
0895-0695
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The San Fernando Valley (SFV), part of the Los Angeles metropolitan area, is a seismically active urban environment. Large-magnitude earthquakes, such as the 1994 Mw 6.7 Northridge event that occurred on a blind fault beneath the valley, caused significant infrastructure damage in the region, underscoring the need for enhanced seismic monitoring to improve the identification of buried faults and hazard evaluation. Currently, the Southern California Earthquake Data Center operates four broadband instruments within the valley; however, the network’s ability to capture small earthquakes beneath the region may be limited. To demonstrate how this data gap can be filled, we use recordings from the SFV array, comprised of 140 nodal instruments with interstation distances ranging from 0.3 to 2.5 km that recorded for one month. High-anthropogenic noise levels in urbanized areas tend to conceal earthquake signals; therefore, we applied a previously developed machine learning model fine-tuned on similar waveforms to detect events and pick seismic phases. In a two-step event association workflow, isolated phase picks were first culled, which eliminated false positive detections and reduced computational runtime. We located 62 events within a 209 km radius of our array with magnitudes ranging from ML 0.13 to 4, including 36 new events that were undetected by the regional network. One event cluster reveals a previously unidentified (5.3 km × 4 km) blind fault zone located ∼5 km beneath the southern part of the valley. Seismicity from this zone is rare in the regional catalog (<3 events per year), despite producing a Mb 4.4 event in 2014. Our results highlight the benefits of detecting small-magnitude seismicity for hazard estimation. Temporary nodal arrays can identify critical gaps in regional monitoring and guide site selection for permanent stations. In addition, our workflow can be applied to complement seismic monitoring in other urban settings. 
    more » « less
  2. ABSTRACT The 1989 Mw 6.9 Loma Prieta earthquake is the first major event to occur along the San Andreas fault (SAF) zone in central California since the 1906 M 7.9 San Francisco earthquake. Given the complexity of this event, uncertainty has persisted as to whether this earthquake ruptured the SAF itself or a secondary fault. Recent work on the SAF in the Coachella Valley in southern California has revealed similar complexity, arising from a nonplanar, nonvertical fault geometry, and has led us to reexamine the Loma Prieta event. We have compiled data sets and data analyses in the vicinity of the Loma Prieta earthquake, including the 3D seismic velocity model and aftershock relocations of Lin and Thurber (2012), potential field data collected by the U.S. Geological Survey following the earthquake, and seismic refraction and reflection data from the 1991 profile of Catchings et al. (2004). The velocity model and aftershock relocations of Lin and Thurber (2012) reveal a geometry for the SAF that appears similar to that in the Coachella Valley (although rotated 180°): at Loma Prieta the fault dips steeply near the surface and curves with depth to join the moderately southwest-dipping main rupture below 6 km depth, itself also nonplanar. The SAF is a clear velocity boundary, with higher velocities on the northeast, attributable to Mesozoic accretionary and other rocks, and lower velocities on the southwest, attributable to Cenozoic sedimentary and volcanic rocks of the La Honda block. Rocks of the La Honda block have been offset right-laterally hundreds of kilometers from similar rocks in the southern San Joaquin Valley and vicinity, providing evidence that the curved northeast fault boundary of this block is the plate boundary. Thus, we interpret that the Loma Prieta earthquake occurred on the SAF and not on a secondary fault. 
    more » « less
  3. SUMMARY The near-surface seismic structure (to a depth of about 1000 m), particularly the shear wave velocity (VS), can strongly affect the propagation of seismic waves and, therefore, must be accurately calibrated for ground motion simulations and seismic hazard assessment. The VS of the top (<300 m) crust is often well characterized from borehole studies, geotechnical measurements, and water and oil wells, while the velocities of the material deeper than about 1000 m are typically determined by tomography studies. However, in depth ranges lacking information on shallow lithological stratification, typically rock sites outside the sedimentary basins, the material parameters between these two regions are typically poorly characterized due to resolution limits of seismic tomography. When the alluded geological constraints are not available, models, such as the Southern California Earthquake Center (SCEC) Community Velocity Models (CVMs), default to regional tomographic estimates that do not resolve the uppermost VS values, and therefore deliver unrealistically high shallow VS estimates. The SCEC Unified Community Velocity Model (UCVM) software includes a method to incorporate the near-surface earth structure by applying a generic overlay based on measurements of time-averaged VS in top 30 m (VS30) to taper the upper part of the model to merge with tomography at a depth of 350 m, which can be applied to any of the velocity models accessible through UCVM. However, our 3-D simulations of the 2014 Mw 5.1 La Habra earthquake in the Los Angeles area using the CVM-S4.26.M01 model significantly underpredict low-frequency (<1 Hz) ground motions at sites where the material properties in the top 350 m are significantly modified by the generic overlay (‘taper’). On the other hand, extending the VS30-based taper of the shallow velocities down to a depth of about 1000 m improves the fit between our synthetics and seismic data at those sites, without compromising the fit at well-constrained sites. We explore various tapering depths, demonstrating increasing amplification as the tapering depth increases, and the model with 1000 m tapering depth yields overall favourable results. Effects of varying anelastic attenuation are small compared to effects of velocity tapering and do not significantly bias the estimated tapering depth. Although a uniform tapering depth is adopted in the models, we observe some spatial variabilities that may further improve our method. 
    more » « less
  4. We constrained sedimentary basin structure using a nodal seismic array consisting of ten dense lines that overlie multiple basins in the northern Los Angeles area. The dense array consists of 758 seismic nodes, spaced ~250–300 m apart along linear transects, that recorded ground motions for 30–35 days. We applied the receiver function (RF) technique to 16 teleseismic events to investigate basin structure. Primary basin-converted phases were identified in the RFs. A shear wave velocity model produced in a separate study using the same dataset was incorporated to convert the basin time arrivals to depth. The deepest part of the San Bernardino basin was identified near the Loma Linda fault at a depth of 2.4 km. Basin depths identified at pierce points for separate events reveal lateral changes in basin depth across distances of ~2–3 km near individual stations. A significant change in basin depth was identified within a small distance of ~4 km near the San Jacinto fault. The San Gabriel basin exhibited the largest basin depths of all three basins, with a maximum depth of 4.2 km. The high lateral resolution from the dense array helped to reveal more continuous structures and reduce uncertainties in the RFs interpretation. We discovered a more complex basin structure than previously identified. Our findings show that the basins’ core areas are not the deepest, and significant changes in basin depth were observed near some faults, including the San Jacinto fault, Fontana fault, Red Hill fault and Indian Hill fault. 
    more » « less
  5. Abstract I present a high-precision earthquake relocation catalog and first-motion focal mechanisms before and during the 2019 Ridgecrest earthquake sequence in eastern California. I obtain phase arrivals, first-motion polarities, and waveform data from the Southern California Earthquake Data Center for more than 24,000 earthquakes with the magnitudes varying between −0.7 and 7.1 from 1 January to 31 July 2019. I first relocate all the earthquakes using phase arrivals through a previously developed 3D seismic-velocity model and then improve relative location accuracies using differential times from waveform cross correlation. The majority of the relocated seismicity is distributed above 12 km depth. The seismicity migration along the northwest–southeast direction can be clearly seen with an aseismic zone near the Coso volcanic field. Focal mechanisms are solved for all the relocated events based on the first-motion polarity data with dominant strike-slip fault solutions. The Mw 6.4 and 7.1 earthquakes are positioned at 12.45 and 4.16 km depths after the 3D relocation, respectively, with strike-slip focal solutions. These results can help our understanding of the 2019 Ridgecrest earthquake sequence and can be used in other seismological and geophysical studies. 
    more » « less