Abstract The San Gabriel, Chino, and San Bernardino sedimentary basins in Southern California amplify earthquake ground motions and prolong the duration of shaking due to the basins' shape and low seismic velocities. In the event of a major earthquake rupture along the southern segment of the San Andreas fault, their connection and physical proximity to Los Angeles (LA) can produce a waveguide effect and amplify strong ground motions. Improved estimates of the shape and depth of the sediment‐basement interface are needed for more accurate ground‐shaking models. We obtain a three‐dimensional basement map of the basins by integrating gravity and seismic measurements. The travel time of the sediment‐basementP‐to‐Sconversion, and the Bouguer gravity along 10 seismic lines, are combined to produce a linear relationship that is used to extend the 2D profiles to a 3D basin map. Basement depth is calculated using the predicted travel time constrained by gravity with anS‐wave velocity model of the area. The model is further constrained by the basement depths from 17 boreholes. The basement map shows the south‐central part of the San Gabriel basin is the deepest part and a significant gravity signature is associated with our interpretation of the Raymond fault. The Chino basin deepens toward the south and shallows northeastward. The San Bernardino basin deepens eastward along the edge of the San Jacinto Fault Zone. In addition, we demonstrate the benefit of using gravity data to aid in the interpretation of the sediment‐basement interface in receiver functions. 
                        more » 
                        « less   
                    
                            
                            Basin Structure for Earthquake Ground Motion Estimates in Urban Los Angeles Mapped with Nodal Receiver Functions
                        
                    
    
            We constrained sedimentary basin structure using a nodal seismic array consisting of ten dense lines that overlie multiple basins in the northern Los Angeles area. The dense array consists of 758 seismic nodes, spaced ~250–300 m apart along linear transects, that recorded ground motions for 30–35 days. We applied the receiver function (RF) technique to 16 teleseismic events to investigate basin structure. Primary basin-converted phases were identified in the RFs. A shear wave velocity model produced in a separate study using the same dataset was incorporated to convert the basin time arrivals to depth. The deepest part of the San Bernardino basin was identified near the Loma Linda fault at a depth of 2.4 km. Basin depths identified at pierce points for separate events reveal lateral changes in basin depth across distances of ~2–3 km near individual stations. A significant change in basin depth was identified within a small distance of ~4 km near the San Jacinto fault. The San Gabriel basin exhibited the largest basin depths of all three basins, with a maximum depth of 4.2 km. The high lateral resolution from the dense array helped to reveal more continuous structures and reduce uncertainties in the RFs interpretation. We discovered a more complex basin structure than previously identified. Our findings show that the basins’ core areas are not the deepest, and significant changes in basin depth were observed near some faults, including the San Jacinto fault, Fontana fault, Red Hill fault and Indian Hill fault. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2317154
- PAR ID:
- 10519256
- Publisher / Repository:
- Geosciences
- Date Published:
- Journal Name:
- Geosciences
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 2076-3263
- Page Range / eLocation ID:
- 320
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Understanding and modeling variability of ground motion is essential for building accurate and precise ground motion prediction equations, which can net site‐specific characterization and reduced hazard levels. Here, we explore the spatial variability in peak ground velocity (PGV) at Sage Brush Flats along the San Jacinto Fault in Southern California. We use data from a dense array (0.6 × 0.6 km2, 1,108 geophones, station spacings 10–30 m) deployed in 2014 for ~1 month. These data offer an opportunity to study small‐scale variability in this region. We examine 38 earthquakes (2 ≤ ML ≤ 4.2) within 200 km of the array. Fault strands and a small basin impact the ground motions, producing PGV variations up to 22% of the mean and a 40% reduction inPandSwave near‐surface velocities. We find along‐fault rupture directivity, source, and path effects can increase PGVs by 167%. Surface PGV measurements exceed the colocated borehole station (depth at 148 m) PGV by factors of 3–10, confirming the impact on PGV from near‐surface fault structures, basins, topography, and amplifications from soft sediments. Consistently, we find high PGVs within the basin structure. A pair of colocated GaML2.6 events produce repeatable PGV values with similar spatial patterns. The average corner frequencies of these two events are 11–16 Hz, and viable measurements of stress drop can differ by 6.45 MPa. Within this small array, the PGV values are variable implying spatial extrapolation of PGV to regions of known faults and basins, even across a small area, should be done with caution.more » « less
- 
            Abstract The Southern San Andreas Fault (SSAF) in California is one of the most thoroughly studied faults in the world, but its configuration at seismogenic depths remains enigmatic in the Coachella Valley. We use a combination of space geodetic and seismic observations to demonstrate that the relatively straight southernmost section of the SSAF, between Thousand Palms and Bombay Beach, is dipping to the northeast at 60–80° throughout the upper crust (<10 km), including the shallow aseismic layer. We constrain the fault attitude in the top 2–3 km using inversions of surface displacements associated with shallow creep, and seismic data from a dense nodal array crossing the fault trace near Thousand Palms. The data inversions show that the shallow dipping structure connects with clusters of seismicity at depth, indicating a continuous throughgoing fault surface. The dipping fault geometry has important implications for the long‐term fault slip rate, the intensity of ground shaking during future large earthquakes, and the effective strength of the southern SAF.more » « less
- 
            Abstract The San Fernando Valley (SFV), a densely populated region in Southern California, has high earthquake hazard due to a complex network of active faults and the amplifying effects of the sedimentary basin. Since the devastating 1994 Mw 6.7 Northridge earthquake, numerous studies have examined its structure using various geological and geophysical datasets. However, current seismic velocity models still lack the resolution to accurately image the near-surface velocity structure and concealed or blind faults, which are critical for high-frequency wavefield simulations and earthquake hazard modeling. To address these challenges, we develop a 3D high-resolution shear-wave velocity model for the SFV using ambient noise data from a dense array of 140 seismic nodes and 10 Southern California Seismic Network stations. We also invert gravity data to map the basin geometry and integrate horizontal-to-vertical spectral ratios and aeromagnetic data to constrain interfaces and map major geological structures. With a lateral resolution of 250 m near the basin center, our model reveals previously unresolved geological features, including the detailed geometry of the basin and previously unmapped structure of faults at depth. The basin deepens from the Santa Monica Mountains in the south to approximately 4 km near its center and 7 km in the Sylmar sub-basin at the basin’s northern margin. Strong velocity contrasts are observed across major faults, at the basin edges, and in the basin’s upper 500 m, for which we measure velocities as low as 200 m/s. Our high-resolution model will enhance ground-motion simulations and earthquake hazard assessments for the SFV and has implications for other urban areas with high seismic risk.more » « less
- 
            null (Ed.)Abstract Local seismic events recorded by the large-N Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma are used to estimate Moho reflections near the array. For events within 50 km of the center of the array, normal moveout corrections and receiver stacking are applied to identify the PmP and SmS Moho reflections on the vertical and transverse components. Corrections for the reported focal depths are applied to a uniform event depth. To stack signals from multiple events, further static corrections of the envelopes of the Moho reflected arrivals from the individual event stacks are applied. The multiple-event stacks are then used to estimate the pre-critical PmP and SmS arrivals, and an average Poisson’s ratio of 1.77±0.02 was found for the crust near the array. Using a modified Oklahoma Geological Survey (OGS) velocity model with this Poisson’s ratio, the time-to-depth converted PmP and SmS arrivals resulted in a Moho depth of 41±0.6 km. The modeling of wide-angle Moho reflections for selected events at epicenter-to-station distances of 90–135 km provides additional constraints, and assuming the modified OGS model, a Moho depth of 40±1 km was inferred. The difference between the pre-critical and wide-angle Moho estimates could result from some lateral variability between the array and the wide-angle events. However, both estimates are slightly shallower than the original OGS model Moho depth of 42 km, and this could also result from a somewhat faster lower crust. This study shows that local seismic events, including induced events, can be utilized to estimate properties and structure of the crust, which, in turn, can be used to better understand the tectonics of a given region. The recording of local seismicity on large-N arrays provides increased lateral phase coherence for the better identification of precritical and wide-angle reflected arrivals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    