skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 10, 2026

Title: Print‐and‐Plate Architected Electrodes for Electrochemical Transformations Under Flow
Abstract Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure‐performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print‐and‐plate” method that combines direct ink writing of micro‐periodic lattices with a two‐step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq−1) electrodes. Theiroperandoperformance is assessed in an anthraquinone disulfonic acid half‐cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print‐and‐plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print‐and‐plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print‐and‐plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow.  more » « less
Award ID(s):
2122195
PAR ID:
10610330
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Advanced Functional Materials, Wiley
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Increasing the thickness of the electrodes is considered the primary strategy to elevate battery energy density. However, as the thickness increases, rate performance, cycling performance, and mechanical stability are affected due to the sluggish ion transfer kinetics and compromised structural integrity. Inspired by the natural hierarchical porous structure of trees, electrodes with bioinspired architecture are fabricated to address these challenges. Specifically, electrodes with aligned columns consist of tree‐inspired vertical channels, and hierarchical pores are constructed by screen printing and ice‐templating, imparting enhanced electrochemical and mechanical performance. Employing an aqueous‐based binder, the LiNi0.8Mn0.1Co0.1O2cathode achieves a high areal energy density of 15.1 mWh cm−2at a rate of 1C at mass loading of 26.0 mg cm−2, benefitting from the multiscale pores that elevated charge transfer kinetics in the thick electrode. The electrodes demonstrate capacity retention of 90% at the 100th cycle at a high current density of 5.2 mA cm−2. To understand the mechanisms that promote electrode performance, simplified electro‐chemo‐mechanical models are developed, the drying process and the charge‐discharge process are simulated. The simulation results suggested that the improved performance of the designed electrode benefits from the lower ohmic overpotential and less strain gradient and stress concentration due to the hierarchical porous architecture. 
    more » « less
  2. Increasing electrode thickness is one route to improve the energy density of lithium-ion battery cells. However, restricted Li+ transport in the electrolyte phase through the porous microstructure of thick electrodes limits the ability to achieve high current densities and rates of charge/discharge with these high energy cells. In this work, processing routes to mitigate transport restrictions were pursued. The electrodes used were comprised of only active material sintered together into a porous pellet. For one of the electrodes, comparisons were done between using ice-templating to provide directional porosity and using sacrificial particles during processing to match the geometric density without pore alignment. The ice-templated electrodes retained much greater discharge capacity at higher rates of cycling, which was attributed to improved transport properties provided by the processing. The electrodes were further characterized using an electrochemical model of the cells evaluated and neutron imaging of a cell containing the ice-templated pellet. The results indicate that significant improvements can be made to electrochemical cell properties via templating the electrode microstructure for situations where the rate limiting step includes ion transport limitations in the cell. 
    more » « less
  3. Abstract Electrochemical energy systems rely on particulate porous electrodes to store or convert energies. While the three‐dimensional (3D) porous structures are introduced to maximize the interfacial area for better overall performance of the system, spatiotemporal heterogeneities arising from materials thermodynamics are localizing the charge transfer processes onto a limited portion of the available interfaces. Here, a simple but precise method is demonstrated to directly track and analyze theoperando(i.e., local and working) interfaces on the mesoscale in a practical graphite porous electrode to obtain the true local current density, which turns out to be two orders of magnitude higher than the globally averaged current density adopted by existing studies. The results shed light on the long‐standing discrepancies in kinetics parameters derived from electroanalytical measurements and from first principle predictions. Contradictory to prevailing beliefs, the electrochemical dynamics are not controlled by the solid‐state diffusion process once the spatiotemporal reaction heterogeneities emerge. 
    more » « less
  4. Abstract Porous electrodes that conduct electrons, protons, and oxygen ions with dramatically expanded catalytic active sites can replace conventional electrodes with sluggish kinetics in protonic ceramic electrochemical cells. In this work, a strategy is utilized to promote triple conduction by facilitating proton conduction in praseodymium cobaltite perovskite through engineering non‐equivalent B‐site Ni/Co occupancy. Surface infrared spectroscopy is used to study the dehydration behavior, which proves the existence of protons in the perovskite lattice. The proton mobility and proton stability are investigated by hydrogen/deuterium (H/D) isotope exchange and temperature‐programmed desorption. It is observed that the increased nickel replacement on the B‐site has a positive impact on proton defect stability, catalytic activity, and electrochemical performance. This doping strategy is demonstrated to be a promising pathway to increase catalytic activity toward the oxygen reduction and water splitting reactions. The chosen PrNi0.7Co0.3O3−δoxygen electrode demonstrates excellent full‐cell performance with high electrolysis current density of −1.48 A cm−2at 1.3 V and a peak fuel‐cell power density of 0.95 W cm−2at 600 °C and also enables lower‐temperature operations down to 350 °C, and superior long‐term durability. 
    more » « less
  5. Abstract Porous carbons are the active materials of choice for supercapacitor applications because of their power capability, long-term cycle stability, and wide operating temperatures. However, the development of carbon active materials with improved physicochemical and electrochemical properties is generally carried out via time-consuming and cost-ineffective experimental processes. In this regard, machine-learning technology provides a data-driven approach to examine previously reported research works to find the critical features for developing ideal carbon materials for supercapacitors. Here, we report the design of a machine-learning-derived activation strategy that uses sodium amide and cross-linked polymer precursors to synthesize highly porous carbons (i.e., with specific surface areas > 4000 m2/g). Tuning the pore size and oxygen content of the carbonaceous materials, we report a highly porous carbon-base electrode with 0.7 mg/cm2of electrode mass loading that exhibits a high specific capacitance of 610 F/g in 1 M H2SO4. This result approaches the specific capacitance of a porous carbon electrode predicted by the machine learning approach. We also investigate the charge storage mechanism and electrolyte transport properties via step potential electrochemical spectroscopy and quasielastic neutron scattering measurements. 
    more » « less