skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Handheld lidar sensors can accurately measure aboveground biomass
Abstract Many recent studies have explored remote sensing approaches to facilitate non‐destructive sampling of aboveground biomass (AGB). Lidar platforms (e.g., iPhone and iPad PRO models) have recently made remote sensing technologies widely available and present an alternative to traditional approaches for estimating AGB. Lidar approaches can be completed within a fraction of the time required by many analog methods. However, it is unknown if handheld sensors are capable of accurately predicting AGB or how different modeling techniques affect prediction accuracy. Here, we collected AGB from 0.25‐m2plots (N = 45) from three sites along an elevational gradient within rangelands surrounding Flagstaff, Arizona, USA. Each plot was scanned with a mobile laser scanner (MLS) and iPad before plants were clipped, dried, and weighed. We compared the capability of iPad and MLS sensors to estimate AGB via minimization of model normalized root mean square error (NRMSE). This process was performed on predictor subsets describing structural, spectral, and field‐based characteristics across a suite of modeling approaches including simple linear, stepwise, lasso, and random forest regression. We found that models developed from MLS and iPad data were equally capable of predicting AGB (NRMSE 26.6% and 29.3%, respectively) regardless of the variable subsets considered. We also found that stepwise regression regularly resulted in the lowest NRMSE. Structural variables were consistently selected during each modeling approach, while spectral variables were rarely included. Field‐based variables were important in linear regression models but were not included after variable selection within random forest models. These findings support the notion that remote sensing techniques offer a valid alternative to analog field‐based data collection methods. Together, our results demonstrate that data collected using a more widely available platform will perform similarly to a more costly option and outline a workflow for modeling AGB using remote sensing systems alone.  more » « less
Award ID(s):
1906243
PAR ID:
10610366
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
16
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grassy ecosystems cover >25% of the world's land surface area. The abundance of herbaceous vegetation in these systems directly impacts a variety of ecological processes, including carbon sequestration, regulation of water and nutrient cycling, and support of grazing wildlife and livestock. Efforts to quantify herbaceous biomass, however, are often limited by a trade‐off between accuracy and spatial scale. Here, we describe a method for using Light Detection and Ranging (LiDAR) to estimate continuous aboveground biomass (AGB) at sub‐meter resolutions over large (10–10 000 ha) spatial scales. Across two African savanna ecosystems, we compared field‐ and LiDAR‐derived structural metrics—including measures of vegetation height and volume—with destructively harvested AGB by aligning our geospatial data with the location of harvested quadrats. Using this combination of approaches, we develop scaling equations to estimate spatially continuous herbaceous AGB over large areas. We demonstrate the utility of this method using a long‐term, large herbivore exclosure experiment as a case study and comprehensively compare common field‐ and LiDAR‐derived metrics for estimating herbaceous AGB. Our results indicate that UAV‐borne LiDAR provides comparable accuracy to standard field methods but over considerably larger areas. Nearly every measure of vegetation structure we quantified using LiDAR provided estimates of AGB that were comparable in accuracy (R2 > 0.6) to the suite of common field methods we evaluated. However, marked differences between our two sites indicate that, for applications where accurate estimation of absolute biomass is a priority, site‐specific parameterization with destructive harvesting is necessary regardless of methodology. With the increasing availability of high‐resolution remote sensing data globally, our results indicate that many measures of herbaceous vegetation structure can be used to accurately compare AGB, even in the absence of complementary field data. 
    more » « less
  2. Abstract AimRapid global change is impacting the diversity of tree species and essential ecosystem functions and services of forests. It is therefore critical to understand and predict how the diversity of tree species is spatially distributed within and among forest biomes. Satellite remote sensing platforms have been used for decades to map forest structure and function but are limited in their capacity to monitor change by their relatively coarse spatial resolution and the complexity of scales at which different dimensions of biodiversity are observed in the field. Recently, airborne remote sensing platforms making use of passive high spectral resolution (i.e., hyperspectral) and active lidar data have been operationalized, providing an opportunity to disentangle how biodiversity patterns vary across space and time from field observations to larger scales. Most studies to date have focused on single sites and/or one sensor type; here we ask how multiple sensor types from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) perform across multiple sites in a single biome at the NEON field plot scale (i.e., 40 m × 40 m). LocationEastern USA. Time period2017–2018. Taxa studiedTrees. MethodsWith a fusion of hyperspectral and lidar data from the NEON AOP, we assess the ability of high resolution remotely sensed metrics to measure biodiversity variation across eastern US temperate forests. We examine how taxonomic, functional, and phylogenetic measures of alpha diversity vary spatially and assess to what degree remotely sensed metrics correlate with in situ biodiversity metrics. ResultsModels using estimates of forest function, canopy structure, and topographic diversity performed better than models containing each category alone. Our results show that canopy structural diversity, and not just spectral reflectance, is critical to predicting biodiversity. Main conclusionsWe found that an approach that jointly leverages spectral properties related to leaf and canopy functional traits and forest health, lidar derived estimates of forest structure, fine‐resolution topographic diversity, and careful consideration of biogeographical differences within and among biomes is needed to accurately map biodiversity variation from above. 
    more » « less
  3. Abstract Climate change is driving substantial changes in North American boreal forests, including changes in productivity, mortality, recruitment, and biomass. Despite the importance for carbon budgets and informing management decisions, there is a lack of near‐term (5–30 year) forecasts of expected changes in aboveground biomass (AGB). In this study, we forecast AGB changes across the North American boreal forest using machine learning, repeat measurements from 25,000 forest inventory sites, and gridded geospatial datasets. We find that AGB change can be predicted up to 30 years into the future, and that training on sites across the entire domain allows accurate predictions even in regions with only a small amount of existing field data. While predicting AGB loss is less skillful than gains, using a multi‐model ensemble can improve the accuracy in detecting change direction to >90% for observed increases, and up to 70% for observed losses. Higher stem density, winter temperatures, and the presence of temperate tree species in forest plots were positively associated with AGB change, whereas greater initial biomass, continentality (difference between mean summer and winter temperatures), prevalence of black spruce (Picea mariana), summer precipitation, and early warning metrics from long‐term remote sensing time series were negatively associated with AGB change. Across the domain, we predict nondisturbance‐induced declines in AGB at 23% of sites by 2030. The approach developed here can be used to estimate near‐future forest biomass in boreal North America and inform relevant management decisions. Our study also highlights the power of machine learning multi‐model ensembles when trained on a large volume of forest inventory plots, which could be applied to other regions with adequate plot density and spatial coverage. 
    more » « less
  4. null (Ed.)
    Timely updates of carbon stock distribution are needed to better understand the impacts of deforestation and degradation on forest carbon stock dynamics. This research aimed to explore an approach for estimating aboveground carbon density (ACD) in the Brazilian Amazon through integration of MODIS (moderate resolution imaging spectroradiometer) and a limited number of light detection and ranging (Lidar) data samples using linear regression (LR) and random forest (RF) algorithms, respectively. Airborne LiDAR data at 23 sites across the Brazilian Amazon were collected and used to calculate ACD. The ACD estimation model, which was developed by Longo et al. in the same study area, was used to map ACD distribution in the 23 sites. The LR and RF methods were used to develop ACD models, in which the samples extracted from LiDAR-estimated ACD were used as dependent variables and MODIS-derived variables were used as independent variables. The evaluation of modeling results indicated that ACD can be successfully estimated with a coefficient of determination of 0.67 and root mean square error of 4.18 kg C/m2 using RF based on spectral indices. The mixed pixel problem in MODIS data is a major factor in ACD overestimation, while cloud contamination and data saturation are major factors in ACD underestimation. These uncertainties in ACD estimation using MODIS data make it difficult to examine annual ACD dynamics of degradation and growth, however this method can be used to examine the deforestation-induced ACD loss. 
    more » « less
  5. Abstract. Remote sensing measurements have been widely used to estimate the planetary boundary layer height (PBLHT). Each remote sensing approach offers unique strengths and faces different limitations. In this study, we use machine learning (ML) methods to produce a best-estimate PBLHT (PBLHT-BE-ML) by integrating four PBLHT estimates derived from remote sensing measurements at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) observatory. Three ML models – random forest (RF) classifier, RF regressor, and light gradient-boosting machine (LightGBM) – were trained on a dataset from 2017 to 2023 that included radiosonde, various remote sensing PBLHT estimates, and atmospheric meteorological conditions. Evaluations indicated that PBLHT-BE-ML from all three models improved alignment with the PBLHT derived from radiosonde data (PBLHT-SONDE), with LightGBM demonstrating the highest accuracy under both stable and unstable boundary layer conditions. Feature analysis revealed that the most influential input features at the SGP site were the PBLHT estimates derived from (a) potential temperature profiles retrieved using Raman lidar (RL) and atmospheric emitted radiance interferometer (AERI) measurements (PBLHT-THERMO), (b) vertical velocity variance profiles from Doppler lidar (PBLHT-DL), and (c) aerosol backscatter profiles from micropulse lidar (PBLHT-MPL). The trained models were then used to predict PBLHT-BE-ML at a temporal resolution of 10 min, effectively capturing the diurnal evolution of PBLHT and its significant seasonal variations, with the largest diurnal variation observed over summer at the SGP site. We applied these trained models to data from the ARM Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) field campaign (EPC), where the PBLHT-BE-ML, particularly with the LightGBM model, demonstrated improved accuracy against PBLHT-SONDE. Analyses of model performance at both the SGP and EPC sites suggest that expanding the training dataset to include various surface types, such as ocean and ice-covered areas, could further enhance ML model performance for PBLHT estimation across varied geographic regions. 
    more » « less