skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 5, 2026

Title: Quantifying aboveground herbaceous biomass in grassy ecosystems: a comparison of field and high‐resolution UAV‐LiDAR approaches
Abstract Grassy ecosystems cover >25% of the world's land surface area. The abundance of herbaceous vegetation in these systems directly impacts a variety of ecological processes, including carbon sequestration, regulation of water and nutrient cycling, and support of grazing wildlife and livestock. Efforts to quantify herbaceous biomass, however, are often limited by a trade‐off between accuracy and spatial scale. Here, we describe a method for using Light Detection and Ranging (LiDAR) to estimate continuous aboveground biomass (AGB) at sub‐meter resolutions over large (10–10 000 ha) spatial scales. Across two African savanna ecosystems, we compared field‐ and LiDAR‐derived structural metrics—including measures of vegetation height and volume—with destructively harvested AGB by aligning our geospatial data with the location of harvested quadrats. Using this combination of approaches, we develop scaling equations to estimate spatially continuous herbaceous AGB over large areas. We demonstrate the utility of this method using a long‐term, large herbivore exclosure experiment as a case study and comprehensively compare common field‐ and LiDAR‐derived metrics for estimating herbaceous AGB. Our results indicate that UAV‐borne LiDAR provides comparable accuracy to standard field methods but over considerably larger areas. Nearly every measure of vegetation structure we quantified using LiDAR provided estimates of AGB that were comparable in accuracy (R2 > 0.6) to the suite of common field methods we evaluated. However, marked differences between our two sites indicate that, for applications where accurate estimation of absolute biomass is a priority, site‐specific parameterization with destructive harvesting is necessary regardless of methodology. With the increasing availability of high‐resolution remote sensing data globally, our results indicate that many measures of herbaceous vegetation structure can be used to accurately compare AGB, even in the absence of complementary field data.  more » « less
Award ID(s):
1931224
PAR ID:
10627930
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Remote Sensing in Ecology and Conservation
Date Published:
Journal Name:
Remote Sensing in Ecology and Conservation
ISSN:
2056-3485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non‐forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low‐stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjustedR2of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave‐one‐out cross‐validation of 3.9%. Biomass per‐unit‐of‐height was similarwithinbut differentamong,plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much‐needed information required to calibrate and validate the vegetation models and satellite‐derived biomass products that are essential to understand vulnerable and understudied non‐forested ecosystems around the globe. 
    more » « less
  2. Abstract The global forest carbon stocks represent the amount of carbon stored in woody vegetation and are important for quantifying the ability of the global forests to sequester atmospheric CO2and to provide ecosystem services (e.g., timber) under climate change. The forest ecosystem carbon pool estimates are highly variable and poorly quantified in areas lacking forest inventory estimates. Here, we compare and analyze aboveground biomass (AGB) estimates from five satellite‐based global data sets and nine dynamic global vegetation models (DVGMs). We find that across the data sets, mean AGB exhibits the largest variability around the tropical area. In addition, AGB shows a similar latitudinal trend but large variability among the data sets. Satellite‐based AGB estimates are lower than those simulated by DVGMs. The divergence among the satellite‐based AGB estimates can be driven by the methodology, input satellite products, and the forested areas used to estimate AGB. The modeled NPP, autotrophic respiration, and carbon allocation mostly drive the variability of AGB simulated by DGVMs. The future availability of a high‐quality global forest area map is anticipated to improve AGB estimate accuracy and to reduce the discrepancies among different satellite‐ and model‐based AGB estimates. We suggest the carbon‐modeling community reexamine the methodology used to estimate AGB and forested areas for a more robust global forest carbon stock estimation. 
    more » « less
  3. Abstract Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field‐based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field‐based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15‐year period for Baltimore, MD, USA using a combination of plot‐based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m−2, a result that we then put into context through comparison with other North American Long‐Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs. 
    more » « less
  4. Accurate measurements of terrain elevation are crucial for many ecological applications. In this study, we sought to assess new global three-dimensional Earth observation data acquired by the spaceborne Light Detection and Ranging (LiDAR) missions Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI). For this, we examined the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 (20 × 14 m and 100 × 14 m segments) and the “GEDI Level 2A Footprint Elevation and Height Metrics”, version 2 (25 m circle). We conducted our analysis across four land cover classes (bare soil, herbaceous, forest, savanna), and six forest types (temperate broad-leaved, temperate needle-leaved, temperate mixed, tropical upland, tropical floodplain, and tropical secondary forest). For assessment of terrain elevation estimates from spaceborne LiDAR data we used high resolution airborne data. Our results indicate that both LiDAR missions provide accurate terrain elevation estimates across different land cover classes and forest types with mean error less than 1 m, except in tropical forests. However, using a GEDI algorithm with a lower signal end threshold (e.g., algorithm 5) can improve the accuracy of terrain elevation estimates for tropical upland forests. Specific environmental parameters (terrain slope, canopy height and canopy cover) and sensor parameters (GEDI degrade flags, terrain estimation algorithm; ICESat-2 number of terrain photons, terrain uncertainty) can be applied to improve the accuracy of ICESat-2 and GEDI-based terrain estimates. Although the goodness-of-fit statistics from the two spaceborne LiDARs are not directly comparable since they possess different footprint sizes (100 × 14 m segment or 20 × 14 m segment vs. 25 m circle), we observed similar trends on the impact of terrain slope, canopy cover and canopy height for both sensors. Terrain slope strongly impacts the accuracy of both ICESat-2 and GEDI terrain elevation estimates for both forested and non-forested areas. In the case of GEDI the impact of slope is, however, partly caused by horizontal geolocation error. Moreover, dense canopies (i.e., canopy cover higher than 90%) affect the accuracy of spaceborne LiDAR terrain estimates, while canopy height does not, when considering samples over flat terrains. Our analysis of the accuracy and precision of current versions of spaceborne LiDAR products for different vegetation types and environmental conditions provides insights on parameter selection and estimated uncertainty to inform users of these key global datasets. 
    more » « less
  5. Abstract Vegetation structural complexity and biodiversity tend to be positively correlated, but understanding of this relationship is limited in part by structural metrics tending to quantify only horizontal or vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1) How do our newly developed structure metrics compare to traditional metrics? (2) How does forest structure vary with elevation in a high‐biodiversity, high topographic complexity region? (3) How do forest structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height‐normalized counterparts, were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Forest structure varied widely across plots spanning the elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant biodiversity was negatively correlated with elevation and more strongly positively correlated with vegetation structure variables. The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms. 
    more » « less