skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: We Are AI: Taking Control of Technology
Responsible AI (RAI) is the science and practice of ensuring the design, development, use, and oversight of AI are socially sustainable---benefiting diverse stakeholders while controlling the risks. Achieving this goal requires active engagement and participation from the broader public. This paper introduces We are AI: Taking Control of Technology, a public education course that brings the topics of AI and RAI to the general audience in a peer-learning setting. We outline the goals behind the course's development, discuss the multi-year iterative process that shaped its creation, and summarize its content. We also discuss two offerings of We are AI to an active and engaged group of librarians and professional staff at New York University, highlighting successes and areas for improvement. The course materials, including a multilingual comic book series by the same name, are publicly available and can be used independently. By sharing our experience in creating and teaching We are AI, we aim to introduce these resources to the community of AI educators, researchers, and practitioners, supporting their public education efforts.  more » « less
Award ID(s):
2326193 2312930 1922658
PAR ID:
10610420
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AAAI.org
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
39
Issue:
28
ISSN:
2159-5399
Page Range / eLocation ID:
29070 to 29077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Responsible Data Science (RDS) and Responsible AI (RAI) have emerged as prominent areas of research and practice. Yet, educational materials and methodologies on this important subject still lack. In this paper, I will recount my experience in developing, teaching, and refining a technical course called “Responsible Data Science”, which tackles the issues of ethics in AI, legal compliance, data quality, algorithmic fairness and diversity, transparency of data and algorithms, privacy, and data protection. I will also describe a public education course called “We are AI: Taking Control of Technology” that brings these topics of AI ethics to the general audience in a peer-learning setting. I made all course materials are publicly available online, hoping to inspire others in the community to come together to form a deeper understanding of the pedagogical needs of RDS and RAI, and to develop and share the much-needed concrete educational materials and methodologies. 
    more » « less
  2. Public sector leverages artificial intelligence (AI) to enhance the efficiency, transparency, and accountability of civic operations and public services. This includes initiatives such as predictive waste management, facial recognition for identification, and advanced tools in the criminal justice system. While public-sector AI can improve efficiency and accountability, it also has the potential to perpetuate biases, infringe on privacy, and marginalize vulnerable groups. Responsible AI (RAI) research aims to address these concerns by focusing on fairness and equity through participatory AI. We invite researchers, community members, and public sector workers to collaborate on designing, developing, and deploying RAI systems that enhance public sector accountability and transparency. Key topics include raising awareness of AI's impact on the public sector, improving access to AI auditing tools, building public engagement capacity, fostering early community involvement to align AI innovations with public needs, and promoting accessible and inclusive participation in AI development. The workshop will feature two keynotes, two short paper sessions, and three discussion-oriented activities. Our goal is to create a platform for exchanging ideas and developing strategies to design community-engaged RAI systems while mitigating the potential harms of AI and maximizing its benefits in the public sector. 
    more » « less
  3. The rapid advancements in Artificial Intelligence (AI) hold the promise of transformative benefits across industries, including construction. To navigate this changing landscape, construction students must not only harness AI's potential but also grasp its ethical considerations and potential challenges. As such, there is a growing imperative within construction education to foster AI literacy among prospective professionals. This study developed and integrated an AI in Construction course module into an undergraduate construction management course. The primary goal is to equip students with AI literacy, achieved through a comprehensive approach that encompasses both theoretical knowledge, covering essential AI concepts and their applications in construction, and practical hands-on experiences, exemplified by a project focused on computer vision for personal protective equipment (PPE) inspection. Results from the course module implementation show that students gained a basic understanding of AI fundamentals after the module, such as dataset annotation, model development, deployment, and evaluation. Qualitative feedback indicates students were motivated to explore further AI-related topics in construction, and several topics that are of their interest were identified. These findings affirm the effectiveness of the proposed module and offer valuable insights for further development and enhancement of AI-related modules in construction education. 
    more » « less
  4. Abstract As generative artificial intelligence (AI) becomes increasingly integrated into society and education, more institutions are implementing AI usage policies and offering introductory AI courses. These courses, however, should not replicate the technical focus typically found in introductory computer science (CS) courses like CS1 and CS2. In this paper, we use an adjustable, interdisciplinary socio‐technical AI literacy framework to design and present an introductory AI literacy course. We present a refined version of this framework informed by the teaching of a 1‐credit general education AI literacy course (primarily for freshmen and first‐year students from various majors), a 3‐credit course for CS majors at all levels, and a summer camp for high school students. Drawing from these teaching experiences and the evolving research landscape, we propose an introductory AI literacy course design framework structured around four cross‐cutting pillars. These pillars encompass (1) understanding the scope and technical dimensions of AI technologies, (2) learning how to interact with (generative) AI technologies, (3) applying principles of critical, ethical, and responsible AI usage, and (4) analyzing implications of AI on society. We posit that achieving AI literacy is essential for all students, those pursuing AI‐related careers, and those following other educational or professional paths. This introductory course, positioned at the beginning of a program, creates a foundation for ongoing and advanced AI education. The course design approach is presented as a series of modules and subtopics under each pillar. We emphasize the importance of thoughtful instructional design, including pedagogy, expected learning outcomes, and assessment strategies. This approach not only integrates social and technical learning but also democratizes AI education across diverse student populations and equips all learners with the socio‐technical, multidisciplinary perspectives necessary to navigate and shape the ethical future of AI. 
    more » « less
  5. The recent surge in artificial intelligence (AI) developments has been met with an increase in attention towards incorporating ethical engagement in machine learning discourse and development. This attention is noticeable within engineering education, where comprehensive ethics curricula are typically absent in engineering programs that train future engineers to develop AI technologies [1]. Artificial intelligence technologies operate as black boxes, presenting both developers and users with a certain level of obscurity concerning their decision-making processes and a diminished potential for negotiating with its outputs [2]. The implementation of collaborative and reflective learning has the potential to engage students with facets of ethical awareness that go along with algorithmic decision making – such as bias, security, transparency and other ethical and moral dilemmas. However, there are few studies that examine how students learn AI ethics in electrical and computer engineering courses. This paper explores the integration of STEMtelling, a pedagogical storytelling method/sensibility, into an undergraduate machine learning course. STEMtelling is a novel approach that invites participants (STEMtellers) to center their own interests and experiences through writing and sharing engineering stories (STEMtells) that are connected to course objectives. Employing a case study approach grounded in activity theory, we explore how students learn ethical awareness that is intrinsic to being an engineer. During the STEMtelling process, STEMtellers blur the boundaries between social and technical knowledge to place themselves at the center of knowledge production. In this WIP, we discuss algorithmic awareness, as one of the themes identified as a practice in developing ethical awareness of AI through STEMtelling. Findings from this study will be incorporated into the development of STEMtelling and address challenges of integrating ethics and the social perception of AI and machine learning courses. 
    more » « less