Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant$$K$$ -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields$$F$$ with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from$$K$$ -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, thecoherent Springer sheaf. As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of$$\mathrm{GL}_{n}(F)$$ into coherent sheaves on the stack of Langlands parameters.
more »
« less
This content will become publicly available on January 1, 2026
Geometrization of the Satake transform for mod p Hecke algebras
Abstract We geometrize the modpSatake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric modpHecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric modpHecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a modpLocal Langlands Correspondence.
more »
« less
- Award ID(s):
- 1840234
- PAR ID:
- 10610422
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 13
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive p-adic group G arise from pairs (S,\theta), where S is a tame elliptic maximal torus of G, and \theta is a character of S satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive p-adic groups.more » « less
-
null (Ed.)Abstract We prove a local–global compatibility result in the mod $$p$$ Langlands program for $$\mathrm {GL}_2(\mathbf {Q}_{p^f})$$ . Namely, given a global residual representation $$\bar {r}$$ appearing in the mod $$p$$ cohomology of a Shimura curve that is sufficiently generic at $$p$$ and satisfies a Taylor–Wiles hypothesis, we prove that the diagram occurring in the corresponding Hecke eigenspace of mod $$p$$ completed cohomology is determined by the restrictions of $$\bar {r}$$ to decomposition groups at $$p$$ . If these restrictions are moreover semisimple, we show that the $$(\varphi ,\Gamma )$$ -modules attached to this diagram by Breuil give, under Fontaine's equivalence, the tensor inductions of the duals of the restrictions of $$\bar {r}$$ to decomposition groups at $$p$$ .more » « less
-
We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian varieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimensiongonly finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga–Satake construction, we also show that only finitely many supersingular K3surfaces admit CM lifts. Our tools includep-adic Hodge theory and group-theoretic techniques.more » « less
-
Abstract We prove that in either the convergent or overconvergent setting, an absolutely irreducible $$F$$-isocrystal on the absolute product of two or more smooth schemes over perfect fields of characteristic $$p$$, further equipped with actions of the partial Frobenius maps, is an external product of $$F$$-isocrystals over the multiplicands. The corresponding statement for lisse $$\overline{{\mathbb{Q}}}_{\ell }$$-sheaves, for $$\ell \neq p$$ a prime, is a consequence of Drinfeld’s lemma on the fundamental groups of absolute products of schemes in characteristic $$p$$. The latter plays a key role in V. Lafforgue’s approach to the Langlands correspondence for reductive groups with $$\ell $$-adic coefficients; the $$p$$-adic analogue will be considered in subsequent work with Daxin Xu.more » « less
An official website of the United States government
