skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy relaxation of N2O in gaseous, supercritical, and liquid xenon and SF6
Rotational and vibrational energy relaxation (RER and VER) of N2O embedded in xenon and SF6 environments ranging from the gas phase to the liquid, including the supercritical regime, is studied at a molecular level. Calibrated intermolecular interactions from high-level electronic structure calculations, validated against experiments for the pure solvents, were used to carry out classical molecular dynamics simulations corresponding to experimental state points for near-critical isotherms. The computed RER rates in low-density solvents of krotXe=(3.67±0.25)×1010 s−1 M−1 and krotSF6=(1.25±0.12)×1011 s−1 M−1 compare well with the rates determined by the analysis of two-dimensional infrared experiments. Simulations find that an isolated binary collision description is successful up to solvent concentrations of ∼4 M. For higher densities, including the supercritical regime, the simulations do not correctly describe RER, probably due to the neglect of solvent–solute coupling in the analysis of the rotational motion. For VER, the near-quantitative agreement between simulations and pump–probe experiments captures the solvent density-dependent trends.  more » « less
Award ID(s):
2102427
PAR ID:
10610453
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
18
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The transition between the gas-, supercritical-, and liquid-phase behavior is a fascinating topic, which still lacks molecular-level understanding. Recent ultrafast two-dimensional infrared spectroscopy experiments suggested that the vibrational spectroscopy of N2O embedded in xenon and SF6 as solvents provides an avenue to characterize the transitions between different phases as the concentration (or density) of the solvent increases. The present work demonstrates that classical molecular dynamics (MD) simulations together with accurate interaction potentials allows us to (semi-)quantitatively describe the transition in rotational vibrational infrared spectra from the P-/R-branch line shape for the stretch vibrations of N2O at low solvent densities to the Q-branch-like line shapes at high densities. The results are interpreted within the classical theory of rigid-body rotation in more/less constraining environments at high/low solvent densities or based on phenomenological models for the orientational relaxation of rotational motion. It is concluded that classical MD simulations provide a powerful approach to characterize and interpret the ultrafast motion of solutes in low to high density solvents at a molecular level. 
    more » « less
  2. The density dependence of rotational and vibrational energy relaxation (RER and VER) of the N 2 O ν 3 asymmetric stretch in dense gas and supercritical Xe and SF 6 solutions for near critical isotherms is measured by ultrafast 2DIR and infrared pump–probe spectroscopy. 2DIR analysis provides precise measurements of RER at all gas and supercritical solvent densities. An isolated binary collision (IBC) model is sufficient to describe RER for solvent densities ≤ ∼4M where rotational equilibrium is re-established in ∼1.5–2.5 collisions. N 2 O RER is ∼30% more efficient in SF 6 than in Xe due to additional relaxation pathways in SF 6 and electronic factor differences. 2DIR analysis revealed that N 2 O RER exhibits a critical slowing effect in SF 6 at near critical density ( ρ* ∼ 0.8) where the IBC model breaks down. This is attributable to the coupling of critical long-range density fluctuations to the local N 2 O free rotor environment. No such RER critical slowing is observed in Xe because IBC break down occurs much further from the Xe critical point. Many body interactions effectively shield N 2 O from these near critical Xe density fluctuations. The N 2 O ν 3 VER density dependence in SF 6 is different than that seen for RER, indicating a different coupling to the near critical environment than RER. N 2 O ν 3 VER is only about ∼7 times slower than RER in SF 6 . In contrast, almost no VER decay is observed in Xe over 200 ps. This VER solvent difference is due to a vibrationally resonant energy transfer pathway in SF 6 that is not possible for Xe. 
    more » « less
  3. We present a study of peptide reorientational dynamics in solution analyzed from the perspective of fluorescence anisotropy decay (FAD) experiments, and atomistic molecular dynamics (MD) and continuum hydrodynamics modeling. Earlier, FAD measurements and MD simulations of the model dipeptide N-acetyltryptophanamide (NATA) in explicit water and in aqueous solutions of urea, guanidinium chloride, and proline co-solvents identified excellent agreement of MD results with experimental data, indicating the presence of significant effects of peptide–solvent interactions, and the overall tumbling of the peptide could be well described by contributions from individual conformers, represented by dihedral-restrained MD. Here, we extend these studies by analyzing dynamic inhomogeneity in the solutions and by developing a hydrodynamic model (HM) of the conformer dynamics. The MD simulation data indicate the presence of markedly different dynamic microenvironments for the four studied solutions, with the average water reorientations being different in all systems, partly reflecting the bulk viscosities. Additionally, the water dynamics also exhibited a marked slowdown in the vicinity of the co-solvents, especially chloride and proline. To gain further insight, we applied the HM to predict rotational correlation times of tryptophan for the individual NATA conformers identified in MD. The hydrodynamic results were in very good agreement with MD simulations for the individual structures, showing that the HM model provides a realistic description of rotational diffusion for rigid peptide structures. Overall, our study generated new microscopic insights into the complex nature of the structure and dynamics of peptide solvation shells for systems containing water and denaturing and stabilizing co-solvents. 
    more » « less
  4. Fluoroether solvents are promising electrolyte candidates for high-energy-density lithium metal batteries, where high ionic conductivity and oxidative stability are important metrics for design of new systems. Recent experiments have shown that these performance metrics, particularly stability, can be tuned by changing the fraction of ether and fluorine content. However, little is known about how different molecular architectures influence the underlying ion transport mechanisms and conductivity. Here, we use all-atom molecular dynamics simulations to elucidate the ion transport and solvation characteristics of fluoroether chains of varying length, and having different ether segment and fluorine terminal group contents. The design rules that emerge from this effort are that solvent size determines lithium-ion transport kinetics, solvation structure, and solvation energy. In particular, the mechanism for lithium-ion transport is found to shift from ion hopping between solvation sites located in different fluoroether chains in short-chain solvents, to ion–solvent co-diffusion in long-chain solvents, indicating that an optimum exists for molecules of intermediate length, where hopping is possible but solvent diffusion is fast. Consistent with these findings, our experimental measurements reveal a non-monotonic behavior of the effects of solvent size on lithium-ion conductivity, with a maximum occurring for medium-length solvent chains. A key design principle for achieving high ionic conductivity is that a trade-off is required between relying on shorter fluoroether chains having high self-diffusivity, and relying on longer chains that increase the stability of local solvation shells. 
    more » « less
  5. ABSTRACT Observations indicate that a continuous supply of gas is needed to maintain observed star formation rates in large, discy galaxies. To fuel star formation, gas must reach the inner regions of such galaxies. Despite its crucial importance for galaxy evolution, how and where gas joins galaxies is poorly constrained observationally and rarely explored in fully cosmological simulations. To investigate gas accretion in the vicinity of galaxies at low redshift, we analyse the FIRE-2 cosmological zoom-in simulations for 4 Milky Way mass galaxies (Mhalo ∼ 1012M⊙), focusing on simulations with cosmic ray physics. We find that at z ∼ 0, gas approaches the disc with angular momentum similar to the gaseous disc edge and low radial velocities, piling-up near the edge and settling into full rotational support. Accreting gas moves predominately parallel to the disc and joins largely in the outskirts. Immediately prior to joining the disc, trajectories briefly become more vertical on average. Within the disc, gas motion is complex, being dominated by spiral arm induced oscillations and feedback. However, time and azimuthal averages show slow net radial infall with transport speeds of 1–3 km s−1 and net mass fluxes through the disc of ∼M⊙ yr−1, comparable to the galaxies’ star formation rates and decreasing towards galactic centre as gas is sunk into star formation. These rates are slightly higher in simulations without cosmic rays (1–7 km s−1, ∼4–5 M⊙ yr−1). We find overall consistency of our results with observational constraints and discuss prospects of future observations of gas flows in and around galaxies. 
    more » « less