skip to main content


Title: Molecular engineering of fluoroether electrolytes for lithium metal batteries
Fluoroether solvents are promising electrolyte candidates for high-energy-density lithium metal batteries, where high ionic conductivity and oxidative stability are important metrics for design of new systems. Recent experiments have shown that these performance metrics, particularly stability, can be tuned by changing the fraction of ether and fluorine content. However, little is known about how different molecular architectures influence the underlying ion transport mechanisms and conductivity. Here, we use all-atom molecular dynamics simulations to elucidate the ion transport and solvation characteristics of fluoroether chains of varying length, and having different ether segment and fluorine terminal group contents. The design rules that emerge from this effort are that solvent size determines lithium-ion transport kinetics, solvation structure, and solvation energy. In particular, the mechanism for lithium-ion transport is found to shift from ion hopping between solvation sites located in different fluoroether chains in short-chain solvents, to ion–solvent co-diffusion in long-chain solvents, indicating that an optimum exists for molecules of intermediate length, where hopping is possible but solvent diffusion is fast. Consistent with these findings, our experimental measurements reveal a non-monotonic behavior of the effects of solvent size on lithium-ion conductivity, with a maximum occurring for medium-length solvent chains. A key design principle for achieving high ionic conductivity is that a trade-off is required between relying on shorter fluoroether chains having high self-diffusivity, and relying on longer chains that increase the stability of local solvation shells.  more » « less
Award ID(s):
2144454
NSF-PAR ID:
10389277
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
ISSN:
2058-9689
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Novel electrolyte designs to further enhance the lithium (Li) metal battery cyclability are highly desirable. Here, fluorinated 1,6‐dimethoxyhexane (FDMH) is designed and synthesized as the solvent molecule to promote electrolyte stability with its prolonged –CF2– backbone. Meanwhile, 1,2‐dimethoxyethane is used as a co‐solvent to enable higher ionic conductivity and much reduced interfacial resistance. Combining the dual‐solvent system with 1mlithium bis(fluorosulfonyl)imide (LiFSI), high Li‐metal Coulombic efficiency (99.5%) and oxidative stability (6 V) are achieved. Using this electrolyte, 20 µm Li||NMC batteries are able to retain80% capacity after 250 cycles and Cu||NMC anode‐free pouch cells last 120 cycles with 75% capacity retention under2.1 µL mAh−1lean electrolyte conditions. Such high performances are attributed to the anion‐derived solid‐electrolyte interphase, originating from the coordination of Li‐ions to the highly stable FDMH and multiple anions in their solvation environments. This work demonstrates a new electrolyte design strategy that enables high‐performance Li‐metal batteries with multisolvent Li‐ion solvation with rationally optimized molecular structure and ratio.

     
    more » « less
  2. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  3. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  4. Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window. 
    more » « less
  5. Abstract

    Low ionic conductivity is one of the main hurdles for the practical application of advanced all‐solid‐state lithium‐ion batteries. Protein‐based solid electrolytes are recently proposed and can potentially provide both high ionic conductivity and high mechanical properties due to the decoupled ion transport mechanism. In this work, the effects of lithium salts and protein structures on the performance of protein‐based electrolytes through both ab initio density functional theory calculations and experiments are systematically investigated. The results show that the anions can be strongly locked by the charged amino acids, thus providing intermediate hopping sites for lithium‐ion, reducing energy barrier for lithium‐ion transport, and then enhancing the ionic conductivity. These calculations also demonstrate that need to be locked at appropriate positions by properly controlling the protein structures in order to provide bridging effects and facilitate lithium‐ion transport. The findings are consistent with the experimental observations and can provide guidance for design and optimization of protein‐based solid electrolytes.

     
    more » « less