Despite the dramatic progress that has been made in the power-conversion efficiency (PCE) of perovskite solar cells (PVSCs), there are still many obstacles to be overcome before these devices can be economically competitive in the photovoltaics market. One of the major hurdles in the commercialization of PVSCs is low stability, which severely limits the effective lifetime of the devices. One of the approaches to achieving higher stability and lifetime of PVSCs is improvement of PVSC film quality. In this paper, we have employed a PAMAM dendrimer layer to reduce the surface roughness of sputter-deposited indium-tin oxide (ITO) films, which were then used in the fabrication of PVSCs. A PAMAM-8 dendrimer layer was deposited by dip-coating the substrates in 25 mL of a 1 μMPAMAM-8 ethanol solution before ITOdeposition. X-ray refractivity (XRR)was used to verify the PAMAMlayer on the substrate. ITOfilms of 150 nm thicknesswere then deposited onto the PAMAMlayer using DC magnetron reactive sputtering. The surface roughness, sheet resistance, and transmissivity of the ITO films were optimized by varying the parameters of the sputtering process. Atomic force microscopy (AFM) was used to measure the surface roughness of the ITO films with and without PAMAM dendrimer layer. A root-mean-square (RMS) film roughness of 1.6 nm, sheet resistance of 21 /ϒ, and transmissivity of > 91% at a wavelength of 400–700 nm were obtained after optimization.
more »
« less
Nanoimprint Lithography for Next-Generation Carbon Nanotube-Based Devices
This research reports the development of 3D carbon nanostructures that can provide unique capabilities for manufacturing carbon nanotube (CNT) electronic components, electrochemical probes, biosensors, and tissue scaffolds. The shaped CNT arrays were grown on patterned catalytic substrate by chemical vapor deposition (CVD) method. The new fabrication process for catalyst patterning based on combination of nanoimprint lithography (NIL), magnetron sputtering, and reactive etching techniques was studied. The optimal process parameters for each technique were evaluated. The catalyst was made by deposition of Fe and Co nanoparticles over an alumina support layer on a Si/SiO2 substrate. The metal particles were deposited using direct current (DC) magnetron sputtering technique, with a particle ranging from 6 nm to 12 nm and density from 70 to 1000 particles/micron. The Alumina layer was deposited by radio frequency (RF) and reactive pulsed DC sputtering, and the effect of sputtering parameters on surface roughness was studied. The pattern was developed by thermal NIL using Si master-molds with PMMA and NRX1025 polymers as thermal resists. Catalyst patterns of lines, dots, and holes ranging from 70 nm to 500 nm were produced and characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Vertically aligned CNTs were successfully grown on patterned catalyst and their quality was evaluated by SEM and micro-Raman. The results confirm that the new fabrication process has the ability to control the size and shape of CNT arrays with superior quality.
more »
« less
- Award ID(s):
- 2100850
- PAR ID:
- 10610473
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 14
- Issue:
- 12
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 1011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a systematic comparison of niobium nitride thin films deposited on oxidized silicon substrates by reactive DC magnetron sputtering and reactive high-power impulse magnetron sputtering (HiPIMS). After determining the nitrogen gas concentration that produces the highest superconducting critical temperature for each process, we characterize the dependence of the critical temperature on film thickness. The optimal nitrogen concentration is higher for HiPIMS than for DC sputtering, and HiPIMS produces higher critical temperatures for all thicknesses studied. We attribute this to the HiPIMS process enabling the films to get closer to optimal stoichiometry before beginning to form a hexagonal crystal phase that reduces the critical temperature, along with the extra kinetic energy in the HiPIMS process improving crystallinity. We also study the ability to increase the critical temperature of the HiPIMS films through the use of an aluminum nitride buffer layer and substrate heating.more » « less
-
null (Ed.)Selective deposition of semiconducting carbon nanotubes (s-CNTs) into densely packed, aligned arrays of individualized s-CNTs is necessary to realize their potential in semiconductor electronics. We report the combination of chemical contrast patterns, topography, and pre-alignment of s-CNTs via shear to achieve selective-area deposition of aligned arrays of s-CNTs. Alternate stripes of surfaces favorable and unfavorable to s-CNT adsorption were patterned with widths varying from 2000 nm down to 100 nm. Addition of topography to the chemical contrast patterns combined with shear enabled the selective-area deposition of arrays of quasi-aligned s-CNTs (∼14°) even in patterns that are wider than the length of individual nanotubes (>500 nm). When the width of the chemical and topographical contrast patterns is less than the length of individual nanotubes (<500 nm), confinement effects become dominant enabling the selective-area deposition of much more tightly aligned s-CNTs (∼7°). At a trench width of 100 nm, we demonstrate the lowest standard deviation in alignment degree of 7.6 ± 0.3° at a deposition shear rate of 4600 s −1 , while maintaining an individualized s-CNT density greater than 30 CNTs μm −1 . Chemical contrast alone enables selective-area deposition, but chemical contrast in addition to topography enables more effective selective-area deposition and stronger confinement effects, with the advantage of removal of nanotubes deposited in spurious areas via selective lift-off of the topographical features. These findings provide a methodology that is inherently scalable, and a means to deposit spatially selective, aligned s-CNT arrays for next-generation semiconducting devices.more » « less
-
There is a growing need for digital and power electronics to deliver higher power for applications in batteries for electric vehicles, energy sources from wind and solar, data centers, and microwave devices. The higher power also generates more heat, which requires better thermal management. Diamond thin films and substrates are attractive for thermal management applications in power electronics because of their high thermal conductivity. However, deposition of diamond by microwave plasma enhanced chemical vapor deposition (MPECVD) requires high temperatures, which can degrade metallization used in power electronic devices. In this research, titanium (Ti)–aluminum (Al) thin films were deposited by DC magnetron sputtering on p-type Si (100) substrates using a physical mask for creating dot patterns for measuring the properties of the contact metallization. The influence of processing conditions and postdeposition annealing in argon (Ar) and hydrogen (H2) at 380 °C for 1 h on the properties of the contact metallization is studied by measuring the I-V characteristics and Hall effect. The results indicated a nonlinear response for the as-deposited films and linear ohmic contact resistance after postannealing treatments. In addition, the results on contact resistance, resistivity, carrier concentration, and Hall mobility of wafers extracted from Ti–Al metal contact to Si (100) are presented and discussed.more » « less
-
This chapter presents structural, optical, and magnetic properties of multiferroic LuFeO3 thin films, deposited on single crystal sapphire and YSZ substrates by an RF magnetron sputtering system. Growth temperature and annealing are found to be critical to stabilize hexagonal LuFeO3 thin films. Radio‐Frequency (RF) Magnetron Sputtering is relatively cost effective and one of the most commonly used methods for the deposition of oxides. An RF Magnetron Sputtering offers flexibility in terms of controlling the growth conditions, maintaining the stoichiometry, and a higher deposition rate. When the lattice strain is released due to annealing, the thin film can form bigger granular structures, as observed in the AFM image, by the nucleation process. The inset shows an example of the energy band edge fitting with the direct energy band gap model.more » « less
An official website of the United States government

