In this work, we demonstrate the growth and phase stabilization of ultrawide bandgap polycrystalline rutile germanium dioxide (GeO2) thin films. GeO2 thin films were deposited using RF magnetron sputtering on r-plane sapphire (Al2O3) substrates. As-deposited films were x-ray amorphous. Postdeposition annealing was performed at temperatures between 650 and 950 °C in an oxygen or nitrogen ambient. Annealing at temperatures from 750 to 950 °C resulted in mixed-phase polycrystalline films containing tetragonal (rutile) GeO2, hexagonal (α-quartz) GeO2, and/or cubic (diamond) germanium (Ge). When nitrogen was used as the anneal ambient, mixed GeO2 phases were observed. In contrast, annealing in oxygen promoted stabilization of the r-GeO2 phase. Grazing angle x-ray diffraction showed a preferred orientation of (220) r-GeO2 for all crystallized films. The combination of O2 annealing and O2 flux during growth resulted in r-GeO2 films with highly preferential alignment. Using electron microscopy, we observed an interfacial layer of hexagonal-oriented GeO2 with epitaxial alignment to the (11¯02) Al2O3 substrate, which may help stabilize the top polycrystalline r-GeO2 film.
more »
« less
Annealing Induced Structural Phase Change of Hexagonal‐LuFeO3 Thin Films
This chapter presents structural, optical, and magnetic properties of multiferroic LuFeO3 thin films, deposited on single crystal sapphire and YSZ substrates by an RF magnetron sputtering system. Growth temperature and annealing are found to be critical to stabilize hexagonal LuFeO3 thin films. Radio‐Frequency (RF) Magnetron Sputtering is relatively cost effective and one of the most commonly used methods for the deposition of oxides. An RF Magnetron Sputtering offers flexibility in terms of controlling the growth conditions, maintaining the stoichiometry, and a higher deposition rate. When the lattice strain is released due to annealing, the thin film can form bigger granular structures, as observed in the AFM image, by the nucleation process. The inset shows an example of the energy band edge fitting with the direct energy band gap model.
more »
« less
- Award ID(s):
- 1406766
- PAR ID:
- 10093153
- Date Published:
- Journal Name:
- Ceramic Transactions Series
- Volume:
- 264
- Page Range / eLocation ID:
- 209-216
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present structural, magnetic, and optical properties of multiferroic hexagonal YbFeO3 thin films, deposited on single crystal (001) Al2O3 and (111) ysz substrates by a magnetron sputtering system. Interestingly, the thermal stress affects YbFeO3 films on Al2O3 and ysz very differently. Although hexagonal-YbFeO3/Al2O3 films changed from a hexagonal to an orthorhombic phase due to annealing above 1000 °C, hexagonal-YbFeO3/ysz films remained mostly unaffected even after annealing at 1200 °C. The electronic excitations of the YbFeO3 thin films are dominated by Fe3+ d to d on-site electronic excitations as well as O 2p to Fe 3d, Yb 6s, and 5d charge-transfer excitations, and these excitations for hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films are distinctly different, consistent with the crystal field environments in the hexagonal and orthorhombic phases of YbFeO3. The room temperature energy band gaps of the hexagonal-YbFeO3 and orthorhombic-YbFeO3 thin films were measured to be ∼1.95 ± 0.05 eV and ∼2.40 ± 0.05 eV, respectively.more » « less
-
Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells.more » « less
-
Rutile germanium oxide (r-GeO2), an ultrawide bandgap semiconductor, is a promising material for next-generation power electronics. Understanding and controlling the structure and morphology of r-GeO2 thin films are crucial for advancing their integration into future devices. In this work, r-GeO2 thin films were grown using RF magnetron sputtering on r plane sapphire substrates. Postdeposition annealing (PDA) was performed in an oxygen ambient atmosphere to crystallize the films. PDA at 950 °C resulted in the formation of needle-like nanostructures, predominantly originating at the edges of the film and growing inward toward the sample center. Sequential annealing at increasing temperatures indicated that these needle-like structures begin forming at temperatures above 925 °C. Next, the effect of the PDA duration on the structure was studied. It was seen that PDA at 950 °C for durations of 1 to 15 min promoted formation of the rutile phase, and extending the PDA duration allowed greater surface coverage of the nanostructures. However, annealing even longer, i.e., for 120 min, resulted in mixed phases of α-quartz and rutile GeO2. These findings demonstrate that controlling the PDA temperature and duration can effectively modulate the morphology of rutile-phase GeO2 thin films.more » « less
-
There is a growing need for digital and power electronics to deliver higher power for applications in batteries for electric vehicles, energy sources from wind and solar, data centers, and microwave devices. The higher power also generates more heat, which requires better thermal management. Diamond thin films and substrates are attractive for thermal management applications in power electronics because of their high thermal conductivity. However, deposition of diamond by microwave plasma enhanced chemical vapor deposition (MPECVD) requires high temperatures, which can degrade metallization used in power electronic devices. In this research, titanium (Ti)–aluminum (Al) thin films were deposited by DC magnetron sputtering on p-type Si (100) substrates using a physical mask for creating dot patterns for measuring the properties of the contact metallization. The influence of processing conditions and postdeposition annealing in argon (Ar) and hydrogen (H2) at 380 °C for 1 h on the properties of the contact metallization is studied by measuring the I-V characteristics and Hall effect. The results indicated a nonlinear response for the as-deposited films and linear ohmic contact resistance after postannealing treatments. In addition, the results on contact resistance, resistivity, carrier concentration, and Hall mobility of wafers extracted from Ti–Al metal contact to Si (100) are presented and discussed.more » « less
An official website of the United States government

