Newly discovered silicon nitride quantum emitters hold great promise for industrial-scale quantum photonic applications. We assess the performance of intrinsic room-temperature SiN single-photon emitters for quantum key distribution, showcasing their exceptional brightness and single-photon purity.
more »
« less
This content will become publicly available on June 20, 2026
Room-temperature high-purity single-photon emission from carbon-doped boron nitride thin films
Hexagonal boron nitride (h-BN) has emerged as a promising platform for generating room temperature single photons exhibiting high brightness and spin-photon entanglement. However, improving emitter purity, stability, and scalability remains a challenge for quantum technologies. Here, we demonstrate highly pure and stable single-photon emitters (SPEs) in h-BN by directly growing carbon-doped, centimeter-scale h-BN thin films using the pulsed laser deposition (PLD) method. These SPEs exhibit room temperature operation with polarized emission, achieving ag(2)(0) value of 0.015, which is among the lowest reported for room temperature SPEs and the lowest achieved for h-BN SPEs. It also exhibits high brightness (~0.5 million counts per second), remarkable stability during continuous operation (>15 min), and a Debye-Waller factor of 45%. First-principles calculations reveal unique carbon defects responsible for these properties, enabled by PLD’s low-temperature synthesis and in situ doping. Our results demonstrate an effective method for large-scale production of high-purity, stable SPEs in h-BN, enabling robust quantum optical sources for various quantum applications.
more »
« less
- PAR ID:
- 10610645
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 11
- Issue:
- 25
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to 46% at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.more » « less
-
Abstract Efficient and compact single photon emission platforms operating at room temperature with ultrafast speed and high brightness will be fundamental components of the emerging quantum communications and computing fields. However, so far, it is very challenging to design practical deterministic single photon emitters based on nanoscale solid‐state materials that meet the fast emission rate and strong brightness demands. Here, a solution is provided to this longstanding problem by using metallic nanocavities integrated with hexagonal boron nitride (hBN) flakes with defects acting as nanoscale single photon emitters (SPEs) at room temperature. The presented hybrid nanophotonic structure creates a rapid speedup and large enhancement in single photon emission at room temperature. Hence, the nonclassical light emission performance is substantially improved compared to plain hBN flakes and hBN on gold‐layered structures without nanocavity. Extensive theoretical calculations are also performed to accurately model the new hybrid nanophotonic system and prove that the incorporation of plasmonic nanocavity is key to efficient SPE performance. The proposed quantum nanocavity single photon source is expected to be an element of paramount importance to the envisioned room‐temperature integrated quantum photonic networks.more » « less
-
Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science. To date, the atomic and electronic origins of SPEs within hBN have not been well understood, and no studies have reported photochromism or explored cross correlations between hBN SPEs. Here, we combine irradiation time-dependent microphotoluminescence spectroscopy with two-color Hanbury Brown–Twiss interferometry in an investigation of the electronic structure of hBN defects. We identify evidence of photochromism in an hBN SPE that exhibits single-photon cross correlations and correlated changes in the intensity of its two zero-phonon lines.more » « less
-
null (Ed.)Abstract In recent years, quantum-dot-like single-photon emitters in atomically thin van der Waals materials have become a promising platform for future on-chip scalable quantum light sources with unique advantages over existing technologies, notably the potential for site-specific engineering. However, the required cryogenic temperatures for the functionality of these sources has been an inhibitor of their full potential. Existing methods to create emitters in 2D materials face fundamental challenges in extending the working temperature while maintaining the emitter’s fabrication yield and purity. In this work, we demonstrate a method of creating site-controlled single-photon emitters in atomically thin WSe 2 with high yield utilizing independent and simultaneous strain engineering via nanoscale stressors and defect engineering via electron-beam irradiation. Many of the emitters exhibit biexciton cascaded emission, single-photon purities above 95%, and working temperatures up to 150 K. This methodology, coupled with possible plasmonic or optical micro-cavity integration, furthers the realization of scalable, room-temperature, and high-quality 2D single- and entangled-photon sources.more » « less
An official website of the United States government
