Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 26, 2025
-
Free, publicly-accessible full text available May 1, 2025
-
Free, publicly-accessible full text available March 26, 2025
-
Free, publicly-accessible full text available October 24, 2024
-
Abstract Optical spectroscopy is indispensable for research and development in nanoscience and nanotechnology, microelectronics, energy, and advanced manufacturing. Advanced optical spectroscopy tools often require both specifically designed high-end instrumentation and intricate data analysis techniques. Beyond the common analytical tools, deep learning methods are well suited for interpreting high-dimensional and complicated spectroscopy data. They offer great opportunities to extract subtle and deep information about optical properties of materials with simpler optical setups, which would otherwise require sophisticated instrumentation. In this work, we propose a computational approach based on a conventional tabletop optical microscope and a deep learning model called ReflectoNet . Without any prior knowledge about the multilayer substrates, ReflectoNet can predict the complex refractive indices of thin films and 2D materials on top of these nontrivial substrates from experimentally measured optical reflectance spectra with high accuracies. This task was not feasible previously with traditional reflectometry or ellipsometry methods. Fundamental physical principles, such as the Kramers–Kronig relations, are spontaneously learned by the model without any further training. This approach enables in-operando optical characterization of functional materials and 2D materials within complex photonic structures or optoelectronic devices.more » « less
-
The size of transistors has drastically reduced over the years. Interconnects have likewise also been scaled down. Today, conventional copper (Cu)-based interconnects face a significant impediment to further scaling since their electrical conductivity decreases at smaller dimensions, which also worsens the signal delay and energy consumption. As a result, alternative scalable materials such as semi-metals and 2D materials were being investigated as potential Cu replacements. In this paper, we experimentally showed that CoPt can provide better resistivity than Cu at thin dimensions and proposed hybrid poly-Si with a CoPt coating for local routing in standard cells for compactness. We evaluated the performance gain for DRAM/eDRAM, and area vs. performance trade-off for D-Flip-Flop (DFF) using hybrid poly-Si with a thin film of CoPt. We gained up to a 3-fold reduction in delay and a 15.6% reduction in cell area with the proposed hybrid interconnect. We also studied the system-level interconnect design using NbAs, a topological semi-metal with high electron mobility at the nanoscale, and demonstrated its advantages over Cu in terms of resistivity, propagation delay, and slew rate. Our simulations revealed that NbAs could reduce the propagation delay by up to 35.88%. We further evaluated the potential system-level performance gain for NbAs-based interconnects in cache memories and observed an instructions per cycle (IPC) improvement of up to 23.8%.more » « less