Summary Strigol is the first identified and one of the most important strigolactones (SLs), but the biosynthetic pathway remains elusive. We functionally identified a strigol synthase (cytochrome P450 711A enzyme) in the Prunus genus through rapid gene screening in a set of SL‐producing microbial consortia, and confirmed its unique catalytic activity (catalyzing multistep oxidation) through substrate feeding experiments and mutant analysis. We also reconstructed the biosynthetic pathway of strigol in Nicotiana benthamiana and reported the total biosynthesis of strigol in the Escherichia coli ‐yeast consortium, from the simple sugar xylose, which paves the way for large‐scale production of strigol. As proof of concept, strigol and orobanchol were detected in Prunus persica root extrudes. This demonstrated a successful prediction of metabolites produced in plants through gene function identification, highlighting the importance of deciphering the sequence–function correlation of plant biosynthetic enzymes to more accurately predicate plant metabolites without metabolic analysis. This finding revealed the evolutionary and functional diversity of CYP711A (MAX1) in SL biosynthesis, which can synthesize different stereo‐configurations of SLs (strigol‐ or orobanchol‐type). This work again emphasizes the importance of microbial bioproduction platform as an efficient and handy tool to functionally identify plant metabolism.
more »
« less
This content will become publicly available on November 18, 2025
Applications of ancestral sequence reconstruction for understanding the evolution of plant specialized metabolism
Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue ‘The evolution of plant metabolism’.
more »
« less
- Award ID(s):
- 2325341
- PAR ID:
- 10610702
- Publisher / Repository:
- Royal Society
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 379
- Issue:
- 1914
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thorp, Holden (Ed.)Ancestral metabolic processes involve the reversible oxidation of molecular hydrogen by hydrogenase. Extant hydrogenase enzymes are complex, comprising hundreds of amino acids and multiple cofactors. We designed a 13–amino acid nickel-binding peptide capable of robustly producing molecular hydrogen from protons under a wide variety of conditions. The peptide forms a di-nickel cluster structurally analogous to a Ni-Fe cluster in [NiFe] hydrogenase and the Ni-Ni cluster in acetyl-CoA synthase, two ancient, extant proteins central to metabolism. These experimental results demonstrate that modern enzymes, despite their enormous complexity, likely evolved from simple peptide precursors on early Earth.more » « less
-
The starch metabolic network was investigated in relation to other metabolic processes by examining a mutant with altered single-gene expression of ATP citrate lyase (ACL), an enzyme responsible for generating cytosolic acetyl-CoA pool from citrate. Previous research has shown that transgenic antisense plants with reduced ACL activity accumulate abnormally enlarged starch granules. In this study, we explored the underlying molecular mechanisms linking cytosolic acetyl-CoA generation and starch metabolism under short-day photoperiods. We performed transcriptome and quantification of starch accumulation in the leaves of wild-type and antisense seedlings with reduced ACL activity. The antisense-ACLA mutant accumulated more starch than the wild type under short-day conditions. Zymogram analyses were conducted to compare the activities of starch-metabolizing enzymes with transcriptomic changes in the seedling. Differential expression between wild-type and antisense-ACLA plants was detected in genes implicated in starch and acetyl-CoA metabolism, and cell wall metabolism. These analyses revealed a strong correlation between the transcript levels of genes responsible for starch synthesis and degradation, reflecting coordinated regulation at the transcriptomic level. Furthermore, our data provide novel insights into the regulatory links between cytosolic acetyl-CoA metabolism and starch metabolic pathways.more » « less
-
Specialized metabolites are structurally diverse and cell‐ or tissue‐specific molecules produced in restricted plant lineages. In contrast, primary metabolic pathways are highly conserved in plants and produce metabolites essential for all of life, such as amino acids and nucleotides. Substrate promiscuity – the capacity to accept non‐native substrates – is a common characteristic of enzymes, and its impact is especially apparent in generating specialized metabolite variation. However, promiscuity only leads to metabolic diversity when alternative substrates are available; thus, enzyme cellular and subcellular localization directly influence chemical phenotypes. We review a variety of mechanisms that modulate substrate availability for promiscuous plant enzymes. We focus on examples where evolution led to modification of the ‘cellular context’ through changes in cell‐type expression, subcellular relocalization, pathway sequestration, and cellular mixing via tissue damage. These varied mechanisms contributed to the emergence of structurally diverse plant specialized metabolites and inform future metabolic engineering approaches.more » « less
-
null (Ed.)Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO 2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore underlying evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
An official website of the United States government
