skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evolutionary History of Plant Metabolism
Tremendous chemical diversity is the hallmark of plants and is supported by highly complex biochemical machinery. Plant metabolic enzymes originated and were transferred from eukaryotic and prokaryotic ancestors and further diversified by the unprecedented rates of gene duplication and functionalization experienced in land plants. Unlike microbes, which have frequent horizontal gene transfer events and multiple inputs of energy and organic carbon, land plants predominantly rely on organic carbon generated from CO 2 and have experienced very few, if any, gene transfers during their recent evolutionary history. As such, plant metabolic networks have evolved in a stepwise manner and on existing networks under various evolutionary constraints. This review aims to take a broader view of plant metabolic evolution and lay a framework to further explore underlying evolutionary mechanisms of the complex metabolic network. Understanding the underlying metabolic and genetic constraints is also an empirical prerequisite for rational engineering and redesigning of plant metabolic pathways. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  more » « less
Award ID(s):
1836824 1938597 1818040
PAR ID:
10249204
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Plant Biology
Volume:
72
Issue:
1
ISSN:
1543-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Land plants have evolved successive changes during their conquest of the land and innovations in sexual reproduction have played a major role in their terrestrialization. Recent years have seen many revealing dissections of the molecular mechanisms of sexual reproduction and much new genomics data from the land plant lineage, including early diverging land plants, as well as algae. This new knowledge is being integrated to further understand how sexual reproduction in land plants evolved, identifying highly conserved factors and pathways, but also molecular changes that underpinned the emergence of new modes of sexual reproduction. Here, we review recent advances in the knowledge of land plant sexual reproduction from an evolutionary perspective and also revisit the evolution of angiosperm double fertilization. 
    more » « less
  2. Over the last decade, collaborative efforts in plant evolutionary research have elucidated the phylogenetic relationships in the green plant lineage and provided insights into the emergence of land plants from a group of terrestrial and freshwater streptophyte algae. A foremost finding was that the genetic underpinnings of several key traits emerged much earlier than land plants — they were present in their streptophyte algal pro- genitors. Currently, the field is at a crossroads, transitioning from genomics-informed descriptions of strep- tophyte algae to a functional understanding of molecular mechanisms underlying their unique physiology, as well as to understanding their origin and evolution. Major progress has been made in the development of valuable genomic resources, new tools and new model systems in streptophyte algae. In this review, we high- light community-developed resources to study these closest algal relatives of land plants to gain insights into the evolution of land plant traits. 
    more » « less
  3. Studies of enzymes in modern-day plants have documented the diversity of metabolic activities retained by species today but only provide limited insight into how those properties evolved. Ancestral sequence reconstruction (ASR) is an approach that provides statistical estimates of ancient plant enzyme sequences which can then be resurrected to test hypotheses about the evolution of catalytic activities and pathway assembly. Here, I review the insights that have been obtained using ASR to study plant metabolism and highlight important methodological aspects. Overall, studies of resurrected plant enzymes show that (i) exaptation is widespread such that even low or undetectable levels of ancestral activity with a substrate can later become the apparent primary activity of descendant enzymes, (ii) intramolecular epistasis may or may not limit evolutionary paths towards catalytic or substrate preference switches, and (iii) ancient pathway flux often differs from modern-day metabolic networks. These and other insights gained from ASR would not have been possible using only modern-day sequences. Future ASR studies characterizing entire ancestral metabolic networks as well as those that link ancient structures with enzymatic properties should continue to provide novel insights into how the chemical diversity of plants evolved. This article is part of the theme issue ‘The evolution of plant metabolism’. 
    more » « less
  4. Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C 3 or C 4 photosynthesis. CAM plants are derived from C 3 photosynthesis ancestors. However, it is extremely unlikely that the C 3 or C 4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C 3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C 3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C 3 -to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C 3 -to-CAM transition in plants using synthetic biology toolboxes. 
    more » « less
  5. Abstract Heterotrimeric G-protein complexes comprising Gα-, Gβ-, and Gγ-subunits and the regulator of G-protein signaling (RGS) are conserved across most eukaryotic lineages. Signaling pathways mediated by these proteins influence overall growth, development, and physiology. In plants, this protein complex has been characterized primarily from angiosperms with the exception of spreading-leaved earth moss (Physcomitrium patens) and Chara braunii (charophytic algae). Even within angiosperms, specific G-protein components are missing in certain species, whereas unique plant-specific variants—the extra-large Gα (XLGα) and the cysteine-rich Gγ proteins—also exist. The distribution and evolutionary history of G-proteins and their function in nonangiosperm lineages remain mostly unknown. We explored this using the wealth of available sequence data spanning algae to angiosperms representing extant species that diverged approximately 1,500 million years ago, using BLAST, synteny analysis, and custom-built Hidden Markov Model profile searches. We show that a minimal set of components forming the XLGαβγ trimer exists in the entire land plant lineage, but their presence is sporadic in algae. Additionally, individual components have distinct evolutionary histories. The XLGα exhibits many lineage-specific gene duplications, whereas Gα and RGS show several instances of gene loss. Similarly, Gβ remained constant in both number and structure, but Gγ diverged before the emergence of land plants and underwent changes in protein domains, which led to three distinct subtypes. These results highlight the evolutionary oddities and summarize the phyletic patterns of this conserved signaling pathway in plants. They also provide a framework to formulate pertinent questions on plant G-protein signaling within an evolutionary context. 
    more » « less