Abstract We present the discovery of activity emanating from main-belt asteroid 2015 FW412, a finding stemming from the Citizen Science projectActive Asteroids, a NASA Partner program. We identified a pronounced tail originating from 2015 FW412and oriented in the anti-motion direction in archival Blanco 4 m (Cerro Tololo Inter-American Observatory, Chile) Dark Energy Camera images from UT 2015 April 13, 18, 19, 21 and 22. Activity occurred near perihelion, consistent with the main-belt comets (MBCs), an active asteroid subset known for sublimation-driven activity in the main asteroid belt; thus 2015 FW412is a candidate MBC. We did not detect activity on UT 2021 December 12 using the Inamori-Magellan Areal Camera and Spectrograph on the 6.5 m Baade telescope, when 2015 FW412was near aphelion.
more »
« less
This content will become publicly available on January 3, 2026
AI-enhanced Citizen Science Discovers Cometary Activity on Near-Earth Object (523822) 2012 DG61
Abstract We report the discovery of cometary activity in the form of a pronounced tail emanating from Near-Earth Object (523822) 2012 DG61, identified in UT 2024 April 18 Dark Energy Camera images by our AI assistant TailNet. TailNet is an AI designed to filter out images unlikely to show activity for volunteers of our NASA Partner “Active Asteroids” Citizen Science campaign, from which our AI is trained. Subsequently, our archival investigation revealed 2012 DG61 is recurrently active after we found it displaying a pronounced tail in a UT 2018 April 16 Steward Observatory Bart Bok 2.3 m telescope image and UT 2018 May 14 observations by G. Borisov with the 0.3 m telescope at MARGO Observatory. Our dynamical integrations reveal that 2012 DG61, an Apollo dynamical class member, is likely in 2:1 mean-motion resonance with Jupiter. We encourage additional observations to help characterize the activity morphology of this near-Earth comet.
more »
« less
- Award ID(s):
- 1950901
- PAR ID:
- 10610704
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Research Notes of the AAS
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2515-5172
- Page Range / eLocation ID:
- 3
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the discovery of cometary activity emanating from Main-belt asteroid 410590 (2008 GB140), a finding facilitated, for the first time, by an artificial intelligence (AI) assistant. The assistant,TailNet, is a prototype we designed to enhance volunteer efforts of our Citizen Science projectActive Asteroids, a NASA Partner program hosted on theZooniverseplatform. Our follow-up investigation revealed eight Dark Energy Camera images showing 2008 GB140with a tail spanning UT 2023 April 23–UT 2023 July 3, when the object was inbound to perihelion. We classify 2008 GB140as an active asteroid and a candidate Main-belt comet (MBC)—a main-belt asteroid that undergoes volatile sublimation-driven activity. Notably, 2008 GB140is presently near perihelion, thus the object is a prime target for follow-up observations to further characterize its activity.more » « less
-
Abstract We have discovered two epochs of activity on quasi-Hilda 2009 DQ118. Small bodies that display comet-like activity, such as active asteroids and active quasi-Hildas, are important for understanding the distribution of water and other volatiles throughout the solar system. Through our NASA Partner Citizen Science project, Active Asteroids, volunteers classified archival images of 2009 DQ118as displaying comet-like activity. By performing an in-depth archival image search, we found over 20 images from UT 2016 March 8–9 with clear signs of a comet-like tail. We then carried out follow-up observations of 2009 DQ118using the 3.5 m Astrophysical Research Consortium Telescope at Apache Point Observatory, Sunspot, New Mexico, USA and the 6.5 m Magellan Baade Telescope at Las Campanas Observatory, Chile. These images revealed a second epoch of activity associated with the UT 2023 April 22 perihelion passage of 2009 DQ118. We performed photometric analysis of the tail and find that it had a similar apparent length and surface brightness during both epochs. We also explored the orbital history and future of 2009 DQ118through dynamical simulations. These simulations show that 2009 DQ118is currently a quasi-Hilda and that it frequently experiences close encounters with Jupiter. We find that 2009 DQ118is currently on the boundary between asteroidal and cometary orbits. Additionally, it has likely been a Jupiter family comet or Centaur for much of the past 10 kyr and will be in these same regions for the majority of the next 10 kyr. Since both detected epochs of activity occurred near perihelion, the observed activity is consistent with sublimation of volatile ices. 2009 DQ118is currently observable until ∼mid-October 2023. Further observations would help to characterize the observed activity.more » « less
-
Abstract We present the discovery of cometary activity on 2018 OR as part of ourActive Asteroidsproject, a NASA Partner Program fueled byZooniverseCitizen Scientists. Volunteers found 2018 OR with a long, diffuse tail in archival images from the Dark Energy Camera on the Blanco 4 m telescope at the Cerro Tololo Inter-American Observatory in Chile. Our team identified additional Canada–France–Hawaii–Telescope MegaCam and Zwicky Transient Facility archival data after classification by Citizen Scientists. Activity originating from 2018 OR and directed in the anti-solar and anti-velocity directions was visible in archival images between UT 2018 September 5–18. Our dynamical simulations indicate 2018 OR experiences close encounters with Jupiter over hundred-year timescales. The orbital period and dynamics suggest 2018 OR is a Jupiter Family Comet, and we recommend further observations from the community to reduce observational uncertainties and investigate activity patterns.more » « less
-
Abstract We report the discovery of activity emanating from (18916) 2000 OG44(alternately designated 1977 SD), a minor planet previously reported to be both an extinct comet and an asteroid on a cometary orbit. We observed 2000 OG44with a thin tail oriented towards the coincident antisolar and antimotion vectors (as projected on the sky) in images we acquired on UT 2023 July 24 and 26 with the Apache Point Observatory 3.5 m Astrophysical Research Consortium telescope (New Mexico, USA). We also include observations made in Arizona with the Vatican Advanced Technology Telescope at the Mount Graham International Observatory and the Lowell Observatory Lowell Discovery Telescope near Happy Jack. We performed dynamical simulations that reveal 2000 OG44most likely originated in the Oort cloud, arriving within the last 4 Myr. We find 2000 OG44, which crosses the orbits of both Jupiter and Mars, is at present on an orbit consistent with a Jupiter-family comet. We carried out thermodynamical modeling that informed our broader diagnosis that the observed activity is most likely due to volatile sublimation.more » « less
An official website of the United States government
