Abstract We report the discovery of recurrent activity on quasi-Hilda comet (QHC) 362P/(457175) 2008 GO98. The first activity epoch was discovered during the perihelion passage of 362P in 2016, so we were motivated to observe it for recurrent cometary activity near its next perihelion passage (UT 2024 July 20). We obtained observations with the Lowell Discovery Telescope, the Astrophysical Research Consortium telescope, and the Vatican Advanced Technology Telescope and identified a second activity epoch when 362P had a true anomaly (ν) as early as 318 1. We conducted archival searches of six repositories and identified images obtained with Canada–France–Hawaii Telescope MegaCam, Dark Energy Camera, Pan-STARRS 1, SkyMapper, Zwicky Transient Facility, and Las Cumbres Observatory Global Telescope network data. Using these data, we identified activity from a previously unreported time span, and we did not detect activity when 362P was away from perihelion, specifically 83∘<ν< 318∘. Detection of activity near perihelion and absence of activity away from perihelion suggest thermally driven activity and volatile sublimation. Our dynamical simulations suggest 362P is a QHC, and it will remain in a combined Jupiter-family comet (JFC) and quasi-Hilda orbit over the next 1 kyr though it will become increasingly chaotic nearing the end of this timeframe. Our reverse simulations suggest 362P may have migrated from the orbit of a long-period comet (∼53%) or Centaur (∼32%); otherwise it remained a JFC (∼15%) over the previous 100 kyr. We recommend additional telescope observations from the community as 362P continues outbound from its perihelion on UT 2024 July 20, as well as continued observations for a third activity epoch.
more »
« less
This content will become publicly available on June 6, 2026
A Dormant Captured Oort Cloud Comet Awakens: (18916) 2000 OG 44
Abstract We report the discovery of activity emanating from (18916) 2000 OG44(alternately designated 1977 SD), a minor planet previously reported to be both an extinct comet and an asteroid on a cometary orbit. We observed 2000 OG44with a thin tail oriented towards the coincident antisolar and antimotion vectors (as projected on the sky) in images we acquired on UT 2023 July 24 and 26 with the Apache Point Observatory 3.5 m Astrophysical Research Consortium telescope (New Mexico, USA). We also include observations made in Arizona with the Vatican Advanced Technology Telescope at the Mount Graham International Observatory and the Lowell Observatory Lowell Discovery Telescope near Happy Jack. We performed dynamical simulations that reveal 2000 OG44most likely originated in the Oort cloud, arriving within the last 4 Myr. We find 2000 OG44, which crosses the orbits of both Jupiter and Mars, is at present on an orbit consistent with a Jupiter-family comet. We carried out thermodynamical modeling that informed our broader diagnosis that the observed activity is most likely due to volatile sublimation.
more »
« less
- PAR ID:
- 10610703
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 986
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L2
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report our discovery of cometary activity in the form of a diffuse tail associated with minor planet 2008 QZ44during two previous orbits: 2008 and 2017. This finding was prompted in part byActive Asteroids, ourZooniverse-hosted NASA Partner Citizen Science program. Participants flagged two UT 2017 July 12 Dark Energy Camera images of 2008 QZ44as active. Independently, our team identified activity in nine Canada-France-Hawaii Telescope MegaPrime images from UT 2008 November 20. During both apparitions 2008 QZ44was near its perihelion passage. 2008 QZ44has a Tisserand parameter with respect to Jupiter of 2.821, placing it in the Jupiter-family comet (JFC) class, and our dynamical integrations confirm this classification. JFCs contain primordial material that informs us about solar system evolution, and help us map the present-day volatile distribution. We note that 2008 QZ44has previously been classified as a quasi-Hilda comet candidate.more » « less
-
Abstract We have discovered two epochs of activity on quasi-Hilda 2009 DQ118. Small bodies that display comet-like activity, such as active asteroids and active quasi-Hildas, are important for understanding the distribution of water and other volatiles throughout the solar system. Through our NASA Partner Citizen Science project, Active Asteroids, volunteers classified archival images of 2009 DQ118as displaying comet-like activity. By performing an in-depth archival image search, we found over 20 images from UT 2016 March 8–9 with clear signs of a comet-like tail. We then carried out follow-up observations of 2009 DQ118using the 3.5 m Astrophysical Research Consortium Telescope at Apache Point Observatory, Sunspot, New Mexico, USA and the 6.5 m Magellan Baade Telescope at Las Campanas Observatory, Chile. These images revealed a second epoch of activity associated with the UT 2023 April 22 perihelion passage of 2009 DQ118. We performed photometric analysis of the tail and find that it had a similar apparent length and surface brightness during both epochs. We also explored the orbital history and future of 2009 DQ118through dynamical simulations. These simulations show that 2009 DQ118is currently a quasi-Hilda and that it frequently experiences close encounters with Jupiter. We find that 2009 DQ118is currently on the boundary between asteroidal and cometary orbits. Additionally, it has likely been a Jupiter family comet or Centaur for much of the past 10 kyr and will be in these same regions for the majority of the next 10 kyr. Since both detected epochs of activity occurred near perihelion, the observed activity is consistent with sublimation of volatile ices. 2009 DQ118is currently observable until ∼mid-October 2023. Further observations would help to characterize the observed activity.more » « less
-
Abstract We report the discovery of cometary activity in the form of a pronounced tail emanating from Near-Earth Object (523822) 2012 DG61, identified in UT 2024 April 18 Dark Energy Camera images by our AI assistant TailNet. TailNet is an AI designed to filter out images unlikely to show activity for volunteers of our NASA Partner “Active Asteroids” Citizen Science campaign, from which our AI is trained. Subsequently, our archival investigation revealed 2012 DG61 is recurrently active after we found it displaying a pronounced tail in a UT 2018 April 16 Steward Observatory Bart Bok 2.3 m telescope image and UT 2018 May 14 observations by G. Borisov with the 0.3 m telescope at MARGO Observatory. Our dynamical integrations reveal that 2012 DG61, an Apollo dynamical class member, is likely in 2:1 mean-motion resonance with Jupiter. We encourage additional observations to help characterize the activity morphology of this near-Earth comet.more » « less
-
Abstract We present the discovery of a short, diffuse tail on minor planet 2010 MK43(alternate designation 2010 RA78)—an object previously identified as an asteroid in a cometary orbit—by volunteers of our Citizen Science programActive Asteroids. Our follow-up investigation revealed eight Dark Energy Camera images showing 2010 MK43with a tail spanning UT 2024 February 12–UT 2024 February 18 when the object was outbound from perihelion. We now classify 2010 MK43as a Jupiter-family comet based on its Tisserand parameter with respect to JupiterTJ = 2.888, though our dynamical simulations reveal that, due to frequent close encounters with Jupiter, 2010 MK43was likely a quasi-Hilda within the last 10 kyr.more » « less
An official website of the United States government
