skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The association between long-term PM2.5 exposure and risk for pancreatic cancer: an application of social informatics
There is a profound need to identify modifiable risk factors to screen and prevent pancreatic cancer. Air pollution, including fine particulate matter (PM2.5), is increasingly recognized as a risk factor for cancer. We conducted a case-control study using data from the electronic health record (EHR) of Duke University Health System, 15-year residential history, NASA satellite fine particulate matter (PM2.5), and neighborhood socioeconomic data. Using deterministic and probabilistic linkage algorithms, we linked residential history and EHR data to quantify long-term PM2.5 exposure. Logistic regression models quantified the association between a 1 interquartile range (IQR) increase in PM2.5 concentration and pancreatic cancer risk. The study included 203 cases and 5027 controls (median age of 59 years, 62% female, 26% Black). Individuals with pancreatic cancer had higher average annual exposure (9.4 μg/m3) as compared to an IQR increase in average annual PM2.5, which was associated with greater odds of pancreatic cancer (odds ratio = 1.20; 95% CI, 1.00-1.44). These findings highlight the link between elevated PM2.5 exposure and increased pancreatic cancer risk. They may inform screening strategies for high-risk populations and guide air pollution policies to mitigate exposure. This article is part of a Special Collection on Environmental Epidemiology.  more » « less
Award ID(s):
2413721
PAR ID:
10610720
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
American Journal of Epidemiology
Volume:
194
Issue:
3
ISSN:
0002-9262
Page Range / eLocation ID:
730 to 737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, air pollution has caused more than 1 million deaths per year in China, making it a major focus of public health efforts. However, future climate change may exacerbate such human health impacts by increasing the frequency and duration of weather conditions that enhance air pollution exposure. Here, we use a combination of climate, air quality, and epidemiological models to assess future air pollution deaths in a changing climate under Representative Concentration Pathway 4.5 (RCP4.5). We find that, assuming pollution emissions and population are held constant at current levels, climate change would adversely affect future air quality for >85% of China’s population (∼55% of land area) by the middle of the century, and would increase by 3% and 4% the population-weighted average concentrations of fine particulate matter (PM2.5) and ozone, respectively. As a result, we estimate an additional 12,100 and 8,900 Chinese (95% confidence interval: 10,300 to 13,800 and 2,300 to 14,700, respectively) will die per year from PM2.5 and ozone exposure, respectively. The important underlying climate mechanisms are changes in extreme conditions such as atmospheric stagnation and heat waves (contributing 39% and 6%, respectively, to the increase in mortality). Additionally, greater vulnerability of China’s aging population will further increase the estimated deaths from PM2.5 and ozone in 2050 by factors of 1 and 3, respectively. Our results indicate that climate change and more intense extremes are likely to increase the risk of severe pollution events in China. Managing air quality in China in a changing climate will thus become more challenging. 
    more » « less
  2. Breathing in fine particulate matter of diameter less than 2.5 µm (PM2.5) greatly increases an individual’s risk of cardiovascular and respiratory diseases. As climate change progresses, extreme weather events, including wildfires, are expected to increase, exacerbating air pollution. However, models often struggle to capture extreme pollution events due to the rarity of high PM2.5 levels in training datasets. To address this, we implemented cluster-based undersampling and trained Transformer models to improve extreme event prediction using various cutoff thresholds (12.1 µg/m3 and 35.5 µg/m3) and partial sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the 35.5 µg/m3 threshold, paired with a 20/80 partial sampling ratio, achieved the best performance, with an RMSE of 2.080, MAE of 1.386, and R2 of 0.914, particularly excelling in forecasting high PM2.5 events. Overall, models trained on augmented data significantly outperformed those trained on original data, highlighting the importance of resampling techniques in improving air quality forecasting accuracy, especially for high-pollution scenarios. These findings provide critical insights into optimizing air quality forecasting models, enabling more reliable predictions of extreme pollution events. By advancing the ability to forecast high PM2.5 levels, this study contributes to the development of more informed public health and environmental policies to mitigate the impacts of air pollution, and advanced the technology for building better air quality digital twins. 
    more » « less
  3. We present a novel source attribution approach that incorporates satellite data into GEOS-Chem adjoint simulations to characterize the species-specific, regional, and sectoral contributions of daily emissions for 3 air pollutants: fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2). This approach is implemented for Washington, DC, first for 2011, to identify urban pollution sources, and again for 2016, to examine the pollution response to changes in anthropogenic emissions. In 2011, anthropogenic emissions contributed an estimated 263 (uncertainty: 130–444) PM2.5- and O3-attributable premature deaths and 1,120 (391–1795) NO2 attributable new pediatric asthma cases in DC. PM2.5 exposure was responsible for 90% of these premature deaths. On-road vehicle emissions contributed 51% of NO2-attributable new asthma cases and 23% of pollution-attributable premature deaths, making it the largest contributing individual sector to DC’s air pollution–related health burden. Regional emissions, originating from Maryland, Virginia, and Pennsylvania, were the most responsible for pollution-related health impacts in DC, contributing 57% of premature deaths impacts and 89% of asthma cases. Emissions from distant states contributed 34% more to PM2.5 exposure in the wintertime than in the summertime, occurring in parallel with strong wintertime westerlies and a reduced photochemical sink. Emission reductions between 2011 and 2016 resulted in health benefits of 76 (28–149) fewer pollution-attributable premature deaths and 227 (2–617) fewer NO2-attributable pediatric asthma cases. The largest sectors contributing to decreases in pollution-related premature deaths were energy generation units (26%) and on-road vehicles (20%). Decreases in NO2-attributable pediatric asthma cases were mostly due to emission reductions from on-road vehicles (63%). Emission reductions from energy generation units were found to impact PM2.5 more than O3, while on-road vehicle emission reductions impacted O3 proportionally more than PM2.5. This novel method is capable of capturing the sources of urban pollution at fine spatial and temporal scales and is applicable to many urban environments, globally. 
    more » « less
  4. Urban air pollution has been long understood as a critical threat to human health worldwide. Worsening urban air quality can cause increased rates of asthma, respiratory illnesses, and mortality. Air pollution is also an important environmental justice issue as it disproportionately burdens populations made vulnerable by their socioeconomic and health status. Using spatially continuous fine-scale air quality data for the city of Philadelphia, this study analyzed the relationship between two air pollutants: particulate matter (PM2.5, black carbon (BC), and three dimensions of vulnerability: social (non-White population), economic (poverty), and health outcomes (asthma prevalence). Spatial autoregressive models outperformed Ordinary Least Squares (OLS) regression, indicating the importance of considering spatial autocorrelation in air pollution-related environmental-justice modeling efforts. Positive relationships were observed between PM2.5 concentrations and the socioeconomic variables and asthma prevalence. Percent non-White population was a significant predictor of BC for all models, while percent poverty was shown to not be a significant predictor of BC in the best fitting model. Our findings underscore the presence of distributive environmental injustices, where marginalized communities may bear a disproportionate burden of air pollution within Philadelphia. 
    more » « less
  5. In urban areas like Chicago, daily life extends above ground level due to the prevalence of high-rise buildings where residents and commuters live and work. This study examines the variation in fine particulate matter (PM2.5) concentrations across building stories. PM2.5 levels were measured using PurpleAir sensors, installed between 8 April and 7 May 2023, on floors one, four, six, and nine of an office building in Chicago. Additionally, data were collected from a public outdoor PurpleAir sensor on the fourteenth floor of a condominium located 800 m away. The results show that outdoor PM2.5 concentrations peak at 14 m height, and then decline by 0.11 μg/m3 per meter elevation, especially noticeable from midnight to 8 a.m. under stable atmospheric conditions. Indoor PM2.5 concentrations increase steadily by 0.02 μg/m3 per meter elevation, particularly during peak work hours, likely caused by greater infiltration rates at higher floors. Both outdoor and indoor concentrations peak around noon. We find that indoor and outdoor PM2.5 are positively correlated, with indoor levels consistently remaining lower than outside levels. These findings align with previous research suggesting decreasing outdoor air pollution concentrations with increasing height. The study informs decision-making by community members and policymakers regarding air pollution exposure in urban settings. 
    more » « less