Goldilocks quantum cellular automata (QCA) have been simulated on quantum hardware and produce emergent small-world correlation networks. In Goldilocks QCA, a single-qubit unitary is applied to each qubit in a one-dimensional chain subject to a balance constraint: a qubit is updated if its neighbors are in opposite basis states. Here, we prove that a subclass of Goldilocks QCA -- including the one implemented experimentally -- map onto free fermions and therefore can be classically simulated efficiently. We support this claim with two independent proofs, one involving a Jordan--Wigner transformation and one mapping the integrable six-vertex model to QCA. We compute local conserved quantities of these QCA and predict experimentally measurable expectation values. These calculations can be applied to test large digital quantum computers against known solutions. In contrast, typical Goldilocks QCA have equilibration properties and quasienergy-level statistics that suggest nonintegrability. Still, the latter QCA conserve one quantity useful for error mitigation. Our work provides a parametric quantum circuit with tunable integrability properties with which to test quantum hardware.
more »
« less
This content will become publicly available on May 1, 2026
Quantum Electrodynamics from Quantum Cellular Automata, and the Tension Between Symmetry, Locality, and Positive Energy
Recent work has demonstrated a correspondence that bridges quantum information processing and high-energy physics: discrete quantum cellular automata (QCA) can, in the continuum limit, reproduce quantum field theories (QFTs). This QCA/QFT correspondence raises fundamental questions about how matter/energy, information, and the nature of spacetime are related. Here, we show that free QED is equivalent to the continuous-space-and-time limit of Fermi and Bose QCA theories on the cubic lattice derived from quantum random walks satisfying simple symmetry and unitarity conditions. In doing so, we define the Fermi and Bose theories in a unified manner using the usual fermion internal space and a boson internal space that is six-dimensional. We show that the reduction to a two-dimensional boson internal space (two helicity states arising from spin-1 plus the photon transversality condition) comes from restricting the QCA theory to positive energies. We briefly examine common symmetries of QCAs and how time-reversal symmetry demands the existence of negative-energy solutions. These solutions produce a tension in coupling the Fermi and Bose theories, in which the strong locality of QCAs seems to require a non-zero amplitude to produce negative-energy states, leading to an unphysical cascade of negative-energy particles. However, we show in a 1D model that, by extending interactions over a larger (but finite) range, it is possible to exponentially suppress the production of negative-energy particles to the point where they can be neglected.
more »
« less
- Award ID(s):
- 2310794
- PAR ID:
- 10610725
- Editor(s):
- Jaeger, Gregg
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 27
- Issue:
- 5
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 492
- Subject(s) / Keyword(s):
- quantum walks quantum cellular automata quantum field theory symmetry interactions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Confinement of topological excitations into particle-like states - typically associated with theories of elementary particles - are known to occur in condensed matter systems, arising as domain-wall confinement in quantum spin chains. However, investigation of confinement in the condensed matter setting has rarely ventured beyond lattice spin systems. Here we analyze the confinement of sine-Gordon solitons into mesonic bound states in a perturbed quantum sine-Gordon model. The latter describes the scaling limit of a one-dimensional, quantum electronic circuit (QEC) array, constructed using experimentally-demonstrated QEC elements. The scaling limit is reached faster for the QEC array compared to spin chains, allowing investigation of the strong-coupling regime of this model. We compute the string tension of confinement of sine-Gordon solitons and the changes in the low-lying energy spectrum. These results, obtained using the density matrix renormalization group method, could be verified in a quench experiment using state-of-the-art QEC technologies.more » « less
-
Quantum sensing and metrology use coherent superposition states of quantum systems to detect and measure physical effects of interest. Their sensitivity is typically limited by the standard quantum limit, which bounds the achievable precision in measurements involving nominally identical but uncorrelated quantum systems. Fully quantum metrology involves entanglement in an array of quantum systems, enabling uncertainty reduction below the standard quantum limit. Although ultracold atoms have been widely used for applications such as atomic clocks or gravitational sensors, molecules show higher sensitivity to many interesting phenomena, including the existence of new, symmetry-violating forces mediated by massive particles. Recent advancements in molecular cooling, trapping and control techniques have enabled the use of molecules for quantum sensing and metrology. This Review describes these advancements and explores the potential of the rich internal structure and enhanced coupling strengths of molecules to probe fundamental physics and drive progress in the field.more » « less
-
Abstract Quantum cellular automata (QCA) evolve qubits in a quantum circuit depending only on the states of their neighborhoods and model how rich physical complexity can emerge from a simple set of underlying dynamical rules. The inability of classical computers to simulate large quantum systems hinders the elucidation of quantum cellular automata, but quantum computers offer an ideal simulation platform. Here, we experimentally realize QCA on a digital quantum processor, simulating a one-dimensional Goldilocks rule on chains of up to 23 superconducting qubits. We calculate calibrated and error-mitigated population dynamics and complex network measures, which indicate the formation of small-world mutual information networks. These networks decohere at fixed circuit depth independent of system size, the largest of which corresponding to 1,056 two-qubit gates. Such computations may enable the employment of QCA in applications like the simulation of strongly-correlated matter or beyond-classical computational demonstrations.more » « less
-
Energy flow in molecules, like the dynamics of other many-dimensional finite systems, involves quantum transport across a dense network of near-resonant states. For molecules in their electronic ground state, the network is ordinarily provided by anharmonic vibrational Fermi resonances. Surface crossing between different electronic states provides another route to chaotic motion and energy redistribution. We show that nonadiabatic coupling between electronic energy surfaces facilitates vibrational energy flow and, conversely, anharmonic vibrational couplings facilitate nonadiabatic electronic state mixing. A generalization of the Logan–Wolynes theory of quantum energy flow in many-dimensional Fermi resonance systems to the two-surface case gives a phase diagram describing the boundary between localized quantum dynamics and global energy flow. We explore these predictions and test them using a model inspired by the problem of electronic excitation energy transfer in the photosynthetic reaction center. Using an explicit numerical solution of the time-dependent Schrödinger equation for this ten-dimensional model, we find quite good agreement with the expectations from the approximate analytical theory.more » « less
An official website of the United States government
