Abstract Soil surface cover is one of the most critical factors affecting soil water vapor transport, especially in drylands where water is limited, and the water movement occurs predominantly in the form of vapor instead of liquid. Biocrusts are an important living ground cover of dryland soils and play a vital role in modifying near‐surface soil properties and maintaining soil structure. The role of biocrusts in mediating soil water vapor transport during daytime water evaporation and nighttime condensation remains unclear. We investigated the differences in vapor diffusion properties, vapor adsorption capacity, and water evaporation between bare soil and three types of biocrusts (cyanobacterial, cyanobacterial‐moss mixed, and moss crusts) in the Chinese Loess Plateau. Our results showed that the three types of biocrusts had 5%–39% higher vapor diffusivity than bare soil. At the same level of ambient relative humidity and temperature, the initial vapor adsorption rates and cumulative adsorption amounts of the biocrusts were 10%–70% and 11%–85% higher than those of bare soil, respectively. Additionally, the late‐stage evaporation rate of cyanobacterial‐, cyanobacterial‐moss mixed‐, and moss‐biocrusts were 31%–217%, 79%–492%, and 146%–775% higher than that of bare soil, respectively. The effect of biocrusts on increasing vapor transport properties was attributed to the higher soil porosity, clay content, and specific surface area induced by the biocrust layer. All of these modifications caused by biocrusts on surface soil vapor transport properties suggest that biocrusts play a vital role in reshaping surface soil water and energy balance in drylands.
more »
« less
Soil-atmosphere fluxes of CO2, CH4, and N2O across an experimentally-grown, successional gradient of biocrust community types
Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.
more »
« less
- Award ID(s):
- 1950901
- PAR ID:
- 10610731
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 13
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains raw and calculated percent cover and frequency data for biological soil crust (hereafter biocrust) functional groups, vascular plant functional groups, and abiotic land surface features on and off gypsum soils in the northern Chihuahuan and eastern Mojave Deserts. Abundance data were obtained from 20 study sites total, 10 located on soils derived from gypsum parent material and 10 located on soils derived from non-gypsum parent materials. Sites were grouped into 10 pairs, in which every gypsum site was partnered with a non-gypsum site located in the same region. Apart from soil type, partnered-site characteristics (topography, climate, elevation, slope, aspect, and presence of biocrusts) were held relatively constant. At each site, cover and frequency assessments were made using the line-point intercept method (LPI) and frequency quadrats (1.0 m^2), respectively. Biocrust functional groups included the following crusts: lichen, moss, incipient algal, light algal, dark algal, unknown photosynthetic crust, and vagrant cyanobacteria. Vascular plant categories included: perennial forbs, perennial graminoids, annual forbs, annual graminoids, subshrub, shrub, Yucca, and cacti. Abiotic land surface features included: woody litter, herbaceous litter, bare soil, rock, bedrock, and animal feces. Moss crusts identified within cover and frequency analyses were sampled, and classified to species level via microscopy. The resulting percent cover and frequency data was used to understand differences in biocrust and moss species abundance and diversity on and off gypsum soils; furthermore, how biocrust and moss species abundance was associated with the measured environmental variables. Soil physical and chemical data from this study can be accessed at knb-lter-jrn.210616002. This study and dataset are complete.more » « less
-
Abstract Drylands comprise 45% of Earth’s land area and contain ecologically critical soil surface communities known as biocrusts. Biocrusts are composed extremotolerant organisms including cyanobacteria, microfungi, algae, lichen, and bryophytes. Fungi in biocrusts help aggregate these communities and may form symbiotic relationships with nearby plants. Climate change threatens biocrusts, particularly moss biocrusts, but its effects on the biocrust mycobiome remain unknown. Here, we performed a culture-dependent and metabarcoding survey of the moss biocrust mycobiome across an aridity gradient to determine whether local climate influences fungal community composition. As the local aridity index increased, fungal communities exhibited greater homogeneity in beta diversity. At arid and hyper-arid sites, communities shifted toward more extremotolerant taxa. We identified a significant proportion of fungal reads and cultures from biocrusts that could not be classified.Rhodotorula mucilaginosaandR. paludigenawere significantly enriched following surface sterilization of healthy biocrust mosses. This aligns with their known roles as plant endophytes. We also observed septate endophyte colonization in the photosynthetic tissues of mosses from arid climates. Collectively, these results suggest that the biocrust mycobiome will undergo significant shifts in diversity due to climate change, favoring extremotolerant taxa as climate conditions intensify. The survey results also highlight taxa with the potential to serve as bioinoculants for enhancing biocrust resilience to climate change. These findings offer valuable insights into the potential impacts of climate change on drylands and provide crucial information for biocrust conservation.more » « less
-
Abstract Biocrusts are a critical surface cover in global drylands, but knowledge about their influences on surface soil thermal properties are still lacking because it is quite challenging to make accurate thermal property measurements for biocrust layers, which are only millimetres thick. In this study, we repacked biocrust layers (moss‐ and cyanobacteria‐dominated, respectively) that had the same material as the original intact biocrusts but was more homogeneous and thicker. The thermal conductivity (λ), heat capacity (C) and thermal diffusivity (k) of the repacked and intact biocrusts were measured by the heat pulse (HP) technique at different mass water contents (θm) and mass ratios (Wt), and the differences between repacked and intact biocrusts were analysed. Our results show that biocrusts substantially alter the thermal properties of the soil surface. The averageλof moss (0.37 W m−1 K−1) and cyanobacteria biocrusts (0.90 W m−1 K−1) were reduced by 63.0% and 10.3% compared with bare soil (1.00 W m−1 K−1), respectively. Edge effects including heat loss and water evaporation caused theλandkof the biocrusts to be underestimated, but theCto be overestimated. The differences in thermal properties were significant (p <0.001), except for the differences in thermal conductivity between repacked and intact cyanobacteria biocrusts, which were not significant (p = 0.379). Specifically, in the volumetric water content (θv) range of 0 to 20%, theλandkof the repacked moss biocrusts were underestimated by 59.1% and 61.8%, respectively, and theCwas overestimated by 23.9% compared with the intact moss biocrusts. Theλandkof the repacked cyanobacteria biocrusts were underestimated by 15.8% and 79.2%, respectively, and theCwas overestimated by 34.8% compared with the intact cyanobacteria biocrusts at theθvrange of 0 to 30%. Typically, this difference increased as theθvrises between repacked and intact biocrusts. Our new measurements provide evidence that the thermal properties of biocrusts were previously misjudged due to the measurement limitations imposed by their limited thickness when measured in situ. Biocrusts are likely more significant in regulating soil heat and temperature in drylands than was previously assumed.more » « less
-
Abstract Understanding the importance of biotic interactions in driving the distribution and abundance of species is a central goal of plant ecology. Early vascular plants likely colonized land occupied by biocrusts — photoautotrophic, surface‐dwelling soil communities comprised of cyanobacteria, bryophytes, lichens and fungi — suggesting biotic interactions between biocrusts and plants have been at play for some 2,000 million years. Today, biocrusts coexist with plants in dryland ecosystems worldwide, and have been shown to both facilitate or inhibit plant species performance depending on ecological context. Yet, the factors that drive the direction and magnitude of these effects remain largely unknown.We conducted a meta‐analysis of plant responses to biocrusts using a global dataset encompassing 1,004 studies from six continents.Meta‐analysis revealed there is no simple positive or negative effect of biocrusts on plants. Rather, plant responses differ by biocrust composition and plant species traits and vary across plant ontogeny. Moss‐dominated biocrusts facilitated, while lichen‐dominated biocrusts inhibited overall plant performance. Plant responses also varied among plant functional groups: C4grasses received greater benefits from biocrusts compared to C3grasses, and plants without N‐fixing symbionts responded more positively to biocrusts than plants with N‐fixing symbionts. Biocrusts decreased germination but facilitated growth of non‐native plant species.Synthesis. Results suggest that interspecific variation in plant responses to biocrusts, contingent on biocrust type, plant traits, and ontogeny can have strong impacts on plant species performance. These findings have important implications for understanding biocrust contributions to plant productivity and community assembly processes in ecosystems worldwide.more » « less
An official website of the United States government

