skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Methane-powered sea spiders: Diverse, epibiotic methanotrophs serve as a source of nutrition for deep-sea methane seep Sericosura
Methane seeps harbor uncharacterized animal–microbe symbioses with unique nutritional strategies. Three undescribed sea spider species (family Ammotheidae; genusSericosura) endemic to methane seeps were found along the eastern Pacific margin, from California to Alaska, hosting diverse methane- and methanol-oxidizing bacteria on their exoskeleton. δ13C tissue isotope values of in situ specimens corroborated methane assimilation (−45‰, on average). Live animal incubations with13C-labeled methane and methanol, followed by nanoscale secondary ion mass spectrometry, confirmed that carbon derived from both compounds was actively incorporated into the tissues within five days. Methano- and methylotrophs of the bacterial families Methylomonadaceae, Methylophagaceae and Methylophilaceae were abundant, based on environmental metagenomics and 16S rRNA sequencing, and fluorescence and electron microscopy confirmed dense epibiont aggregations on the sea spider exoskeleton. Egg sacs carried by the males hosted identical microbes suggesting vertical transmission. We propose that these sea spiders farm and feed on methanotrophic and methylotrophic bacteria, expanding the realm of animals known to harness C1 compounds as a carbon source. These findings advance our understanding of the biology of an understudied animal lineage, unlocking some of the unique nutritional links between the microbial and faunal food webs in the oceans.  more » « less
Award ID(s):
2048720
PAR ID:
10610773
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
US National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
26
ISSN:
0027-8424
Subject(s) / Keyword(s):
methane seep symbiosis Pycnogonida methane oxidation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane seeps harbor uncharacterized animal–microbe symbioses with unique nutritional strategies. Three undescribed sea spider species (family Ammotheidae; genus Sericosura) endemic to methane seeps were found along the eastern Pacific margin, from California to Alaska, hosting diverse methane-and methanol-oxidizing bacteria on their exoskeleton. δ13C tissue isotope values of in situ specimens corroborated methane assimilation (−45‰, on average). Live animal incubations with 13C-labeled methane and methanol, followed by nanoscale secondary ion mass spectrometry, confirmed that carbon derived from both compounds was actively incorporated into the tissues within five days. Methano-and methylotrophs of the bacterial families Methylomonadaceae, Methylophagaceae and Methylophilaceae were abundant, based on environmental metagenomics and 16S rRNA sequencing, and fluorescence and electron microscopy confirmed dense epibiont aggregations on the sea spider exoskeleton. Egg sacs carried by the males hosted identical microbes suggesting vertical transmission. We propose that these sea spiders farm and feed on methanotrophic and methylotrophic bacteria, expanding the realm of animals known to harness C1 compounds as a carbon source. These findings advance our understanding of the biology of an understudied animal lineage, unlocking some of the unique nutritional links between the microbial and faunal food webs in the oceans. 
    more » « less
  2. Deep-sea cold seeps are dynamic sources of methane release and unique habitats supporting ocean biodiversity and productivity. Here, we describe newly discovered animal-bacterial symbioses fueled by methane, between two species of annelid (a serpulid Laminatubus and sabellid Bispira ) and distinct aerobic methane-oxidizing bacteria belonging to the Methylococcales, localized to the host respiratory crown. Worm tissue δ 13 C of −44 to −58‰ are consistent with methane-fueled nutrition for both species, and shipboard stable isotope labeling experiments revealed active assimilation of 13 C-labeled methane into animal biomass, which occurs via the engulfment of methanotrophic bacteria across the crown epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria and may further explain their enigmatic mass occurrence at 150–million year–old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep sea and, by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation. 
    more » « less
  3. Abstract Ecotones have been described as “biodiversity hotspots” from myriad environments, yet have not been studied extensively in the deep ocean. While physiologically challenging, deep‐water methane seeps host highly productive communities fueled predominantly by chemosynthetic pathways. We hypothesized that the biological and geochemical influence of methane seeps extends into background habitats, resulting in the formation of a “chemotone” where chemosynthesis‐based and photosynthesis‐based communities overlap. To investigate this, we analyzed the macrofaunal assemblages and geochemical properties of sediments collected from “active,” “transition” (potential chemotone), and “background” habitats surrounding five Costa Rican methane seeps (depth range 377–1908 m). Sediment geochemistry demonstrated a clear distinction between active and transition habitats, but not between transition and background habitats. In contrast, biological variables confirmed the presence of a chemotone, characterized by intermediate biomass, a distinct species composition (including habitat endemics and species from both active and background habitats), and enhanced variability in species composition among samples. However, chemotone assemblages were not distinct from active and/or background assemblages in terms of faunal density, biological trait composition, or diversity. Biomass and faunal stable isotope data suggest that chemotones are driven by a gradient in food delivery, receiving supplements from chemosynthetic production in addition to available photosynthetic‐based resources. Sediment geochemistry suggests that chemosynthetic food supplements are delivered across the chemotone at least in part through the water column, as opposed to reflecting exclusivelyin situchemosynthetic production in sediments. Management efforts should be cognisant of the ecological attributes and spatial extent of the chemotone that surrounds deep‐sea chemosynthetic environments. 
    more » « less
  4. Methane seeps are highly productive ecosystems that provide carbon sequestration services, host diverse communities including endemic species, and serve as habitats for commercial fisheries. Little is known about the economic value the public places on them. Discrete Choice Experiments (DCEs) are administered to a sample of Costa Rican taxpayers to evaluate their willingness to pay (WTP) in monetary terms using tradeoffs made in a survey context involving three of the main attributes of methane seep ecosystems to provide insights for future conservation and management efforts. Extensive effort is devoted to understanding how Costa Ricans view different aspects of the deep sea. We find that they associate it with strange animals, natural resources, the unknown, and being far from reach. Perhaps surprisingly, they underestimate how much they know about the deep sea. We find that WTP for methane seep protection is the highest for programs that protect seeps with endemic species, followed by seeps with high climate change mitigation potential and commercial fishing habitat. Higher-income groups and women are more likely to prefer options that increase the current level of protection. We discuss how science communication and community engagement contribute to care expressed toward the deep sea. 
    more » « less
  5. Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems. 
    more » « less