skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 2, 2026

Title: Who Puts the "Social" in "Social Computing"?: Using A Neurodiversity Framing to Review Social Computing Research
Human-Computer Interaction (HCI) and Computer Supported Collaborative Work (CSCW) have a longstanding tradition of interrogating the values that underlie systems in order to create novel and accessible experiences. In this work, we use a neurodiversity framing to examine how people with ways of thinking, speaking, and being that differ from normative assumptions are perceived by researchers seeking to study and design social computing systems for neurodivergent people. From a critical analysis of 84 publications systematically gathered across a decade of social computing research, we determine that research into social computing with neurodiverse participants is largely medicalized, adheres to historical stereotypes of neurodivergent children and their families, and is insensitive to the wide spectrum of neurodivergent people that are potential users of social technologies. When social computing systems designed for neurodivergent people rely upon a conception of disability that restricts expression for the sake of preserving existing norms surrounding social experience, the result is often simplistic and restrictive systems that prevent users from being social in a way that feels natural and enjoyable. We argue that a neurodiversity perspective informed by critical disability theory allows us to engage with alternative forms of sociality as meaningful and desirable rather than a deficit to be compensated for. We conclude by identifying opportunities for researchers to collaborate with neurodivergent users and their communities, including the creation of spectrum-conscious social systems and the embedding of double empathy into systems for more equitable design.  more » « less
Award ID(s):
2236618
PAR ID:
10610777
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the ACM on Human-Computer Interaction
Date Published:
Journal Name:
Proceedings of the ACM on Human-Computer Interaction
Volume:
9
Issue:
2
ISSN:
2573-0142
Page Range / eLocation ID:
1 to 44
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. One of the grand challenges of artificial intelligence and affective computing is for technology to become emotionally-aware and thus, more human-like. Modeling human emotions is particularly complicated when we consider the lived experiences of people who are on the autism spectrum. To understand the emotional experiences of autistic adults and their attitudes towards common representations of emotions, we deployed a context study as the first phase of a Grounded Design research project. Based on community observations and interviews, this work contributes empirical evidence of how the emotional experiences of autistic adults are entangled with social interactions as well as the processing of sensory inputs. We learned that (1) the emotional experiences of autistic adults are embodied and co-constructed within the context of physical environments, social relationships, and technology use, and (2) conventional approaches to visually representing emotion in affective education and computing systems fail to accurately represent the experiences and perceptions of autistic adults. We contribute a social-emotional-sensory design map to guide designers in creating more diverse and nuanced affective computing interfaces that are enriched by accounting for neurodivergent users. 
    more » « less
  2. We develop computing practices for neurodiverse learners. While many researchers in special education adopt a behavioral perspective, we leverage a neurodiversity perspective that is more widely accepted within the autism community itself. We report on an initial phase of a research-practice partnership with a pilot cohort of four middle school teachers with whom we are co-designing embodied musical practices using networked Internet of Things (IoT) wearables with embedded inertial measurement units (IMUs). Our culturally and epistemically diverse teaching fellows work with diverse student populations (Black, Brown, Native American, neurodivergent) at Title 1 schools. The neurodiversity perspective sensitizes our co-design to tactile, kinetic, sensory, and ensemble energies that overflow neurotypical learning modalities, which typically privilege screen- based interaction, cognitivism, and isolation. We find “wearable music” to be an inclusive, mobile, and mobilizing computing approach that foregrounds embodied interactions in fun and engaging group activities surfacing computational thinking (CT). In later phases of this research, our teaching fellows will run workshops for additional educators, scaling the curriculum for implementation and evaluation in many more classrooms. 
    more » « less
  3. To make computer science (CS) more equitable, many educational efforts are shifting foci from access and content understanding to include identification, agency, and social change. As part of these efforts, we look at how learners perceive themselves in relation to what they believe CS is and what it means to participate in CS. Informed by three design lenses, unblackboxing, culturally responsive computing, and creative production, we designed a physical computing kit and activities. Drawing from qualitative analysis of interviews, artifacts, and observation of six young people in a weeklong summer workshop, we report on the experiences of two young Black women designers. We found that using these materials young people were able to: leverage personal goals and prior experiences in computing work; feel as if they were figuring out computing systems; and recognize computational technologies as created by people for particular purposes. We observed that while the mix of materials and activities created some frustration for participants, it also prompted processes of community building and inquiry. We discuss implications for design of computational tools in equity-centered CS education and pose seamfulness as an emergent heuristic when designing for learning that engages young people with the social, not just material, systems of computing. 
    more » « less
  4. In this paper, a flexible resource sharing paradigm is introduced, to enable the allocation of users’ computing tasks in a social cloud computing system offering both Virtual Machines (VMs) and Serverless Computing (SC) functions. VMs are treated as a safe computing resource, while SC due to the uncertainty introduced by its shared nature, is treated as a common pool resource, being susceptible to potential over-exploitation. These computing options are differentiated based on the potential satisfaction perceived by the user, as well as their corresponding pricing, while taking into account the social interactions among the users. Considering the inherent uncertainty of the considered computing environment, Prospect Theory and the theory of the Tragedy of the Commons are adopted to properly reflect the users’ behavioral characteristics, i.e., gain-seeking or loss-averse behavior, as well as to formulate appropriate prospect-theoretic utility functions, embodying the social-aware and risk-aware user’s perceived satisfaction. A distributed maximization problem of each user’s expected prospect-theoretic utility is formulated as a non-cooperative game among the users and the corresponding Pure Nash Equilibrium (PNE), i.e., optimal computing jobs offloading to the VMs and the SC, is determined, while a distributed low-complexity algorithm that converges to the PNE is introduced. The performance and key principles of the proposed framework are demonstrated through modeling and simulation. 
    more » « less
  5. Augmentative and alternative communication (AAC) is a field of research and practice that works with people who have a communication disability. One form AAC can take is a high-tech tool, such as a software-based communication system. Like all user interfaces, these systems must be designed and it is critical to include AAC users in the design process for their systems. A participatory design approach can include AAC users in the design process, but modifications may be necessary to make these methods more accessible. We present a two-part design process we are investigating for improving the participatory design for high-tech AAC systems. We discuss our plans to refine the accessibility of this process based on participant feedback. 
    more » « less