skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-term solar irradiance forecasting under data transmission constraints
We report a data-parsimonious machine learning model for short-term forecasting of solar irradiance. The model follows the convolutional neural network – long-short term memory architecture. Its inputs include sky camera images that are reduced to scalar features to meet data transmission constraints. The model focuses on predicting the deviation of irradiance from the persistence of cloudiness (POC) model. Inspired by control theory, a noise signal input is used to capture the presence of unknown and/or unmeasured input variables and is shown to improve model predictions, often considerably. Five years of data from the NREL Solar Radiation Research Laboratory were used to create three rolling train-validate sets and determine the best representations for time, the optimal span of input measurements, and the most impactful model input data (features). For the chosen validation data, the model achieves a mean absolute error of 74.29 W/m2 over a time horizon of up to two hours, compared to a baseline 134.35 W/m2 using the POC model.  more » « less
Award ID(s):
2052814
PAR ID:
10610974
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Brian A. Korgel
Date Published:
Journal Name:
Renewable Energy
Volume:
233
Issue:
C
ISSN:
0960-1481
Page Range / eLocation ID:
121058
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Variation in solar irradiance causes power generation fluctuations in solar power plants. Power grid operators need accurate irradiance forecasts to manage this variability. Many factors affect irradiance, including the time of year, weather and time of day. Cloud cover is one of the most important variables that affects solar power generation, but is also characterized by a high degree of variability and uncertainty. Deep learning methods have the ability to learn long-term dependencies within sequential data. We investigate the application of Gated Recurrent Units (GRU) to forecast solar irradiance and present the results of applying multivariate GRU to forecast hourly solar irradiance in Phoenix, Arizona. We compare and evaluate the performance of GRU against Long Short-Term Memory (LSTM) using strictly historical solar irradiance data as well as the addition of exogenous weather variables and cloud cover data. Based on our results, we found that the addition of exogenous weather variables and cloud cover data in both GRU and LSTM significantly improved forecasting accuracy, performing better than univariate and statistical models. 
    more » « less
  2. null (Ed.)
    With the recent discoveries and engineering solutions emerging in nanomaterials and nanostructures, independent band modulation of solar radiation on building envelopes, including glazing systems, has become increasingly viable as a potential means of improving building energy savings and indoor visual comfort. However, when it comes to the prediction of these new materials’ potential energy performance in buildings, most studies utilize a simple solar irradiance (e.g., global horizontal solar irradiance, direct beam solar irradiance) or a rough estimation of solar infrared (e.g., 50% solar irradiance) as input, which may cause significant errors. Consequently, there is a pressing need for reliable performance estimations of the solar infrared control and response at the building’s scale. To assess this, we need a solar spectral irradiance model, or at least a wideband (visible or infrared) solar irradiance model, as input. To develop this new type of model, one needs to understand the modeling-related key elements, including available solar spectral irradiance datasets, data collection methods, and modeling techniques. As such, this paper reviews the current major measurement methods and tools used in collecting solar spectral irradiance data with a focus on the solar infrared region, identifies the available related resources and datasets that particularly encompass the solar spectral irradiance data with a sufficient wavelength range, and studies existing solar irradiation modeling techniques for building simulations. These investigations will then form the background and backbone for a study scheme of solar infrared radiation modeling and indicate future research paths and opportunities. 
    more » « less
  3. Power grid operators rely on solar irradiance forecasts to manage uncertainty and variability associated with solar power. Meteorological factors such as cloud cover, wind direction, and wind speed affect irradiance and are associated with a high degree of variability and uncertainty. Statistical models fail to accurately capture the dependence between these factors and irradiance. In this paper, we introduce the idea of applying multivariate Gated Recurrent Units (GRU) to forecast Direct Normal Irradiance (DNI) hourly. The proposed GRU-based forecasting method is evaluated against traditional Long Short-Term Memory (LSTM) using historical irradiance data (i.e., weather variables that include cloud cover, wind direction, and wind speed) to forecast irradiance forecasting over intra-hour and inter-hour intervals. Our evaluation on one of the sites from Measurement and Instrumentation Data Center indicate that both GRU and LSTM improved DNI forecasting performance when evaluated under different conditions. Moreover, including wind direction and wind speed can have substantial improvement in the accuracy of DNI forecasts. Besides, the forecasting model can accurately forecast irradiance values over multiple forecasting horizons. 
    more » « less
  4. Solar energy is now the cheapest form of electricity in history. Unfortunately, significantly increasing the electric grid's fraction of solar energy remains challenging due to its variability, which makes balancing electricity's supply and demand more difficult. While thermal generators' ramp rate---the maximum rate at which they can change their energy generation---is finite, solar energy's ramp rate is essentially infinite. Thus, accurate near-term solar forecasting, or nowcasting, is important to provide advance warnings to adjust thermal generator output in response to variations in solar generation to ensure a balanced supply and demand. To address the problem, this paper develops a general model for solar nowcasting from abundant and readily available multispectral satellite data using self-supervised learning. Specifically, we develop deep auto-regressive models using convolutional neural networks (CNN) and long short-term memory networks (LSTM) that are globally trained across multiple locations to predict raw future observations of the spatio-temporal spectral data collected by the recently launched GOES-R series of satellites. Our model estimates a location's near-term future solar irradiance based on satellite observations, which we feed to a regression model trained on smaller site-specific solar data to provide near-term solar photovoltaic (PV) forecasts that account for site-specific characteristics. We evaluate our approach for different coverage areas and forecast horizons across 25 solar sites and show that it yields errors close to that of a model using ground-truth observations. 
    more » « less
  5. Abstract We propose a novel deep learning framework, named SYMHnet, which employs a graph neural network and a bidirectional long short‐term memory network to cooperatively learn patterns from solar wind and interplanetary magnetic field parameters for short‐term forecasts of the SYM‐H index based on 1‐ and 5‐min resolution data. SYMHnet takes, as input, the time series of the parameters' values provided by NASA's Space Science Data Coordinated Archive and predicts, as output, the SYM‐H index value at time pointt + whours for a given time pointtwherewis 1 or 2. By incorporating Bayesian inference into the learning framework, SYMHnet can quantify both aleatoric (data) uncertainty and epistemic (model) uncertainty when predicting future SYM‐H indices. Experimental results show that SYMHnet works well at quiet time and storm time, for both 1‐ and 5‐min resolution data. The results also show that SYMHnet generally performs better than related machine learning methods. For example, SYMHnet achieves a forecast skill score (FSS) of 0.343 compared to the FSS of 0.074 of a recent gradient boosting machine (GBM) method when predicting SYM‐H indices (1 hr in advance) in a large storm (SYM‐H = −393 nT) using 5‐min resolution data. When predicting the SYM‐H indices (2 hr in advance) in the large storm, SYMHnet achieves an FSS of 0.553 compared to the FSS of 0.087 of the GBM method. In addition, SYMHnet can provide results for both data and model uncertainty quantification, whereas the related methods cannot. 
    more » « less