Abstract 2D dilute magnetic semiconductors have been recently reported in transition metal dichalcogenides doped with spin‐polarized transition metal atoms, for example vanadium‐doped WS2monolayers, which exhibit room‐temperature ferromagnetic ordering. However, a broadband characterization of the electronic band structure of these doped WS2monolayers and its dependence on vanadium concentration is still lacking. Therefore, power‐dependent photoluminescence, resonant four‐wave mixing, and differential reflectance spectroscopies are performed here to study optical transitions close to the A exciton energy of vanadium‐doped WS2monolayers at three different doping levels. Instead of a single A exciton peak, vanadium‐doped samples exhibit two photoluminescence peaks associated with transitions from a donor‐like level and the conduction band minima. Moreover, resonant Raman and second‐harmonic generation experiments reveal a blueshift in the B exciton energy but no energy change in the C exciton after vanadium doping. Density functional theory calculations show that the band structure is sensitive to the HubbardUcorrection for vanadium, and several scenarios are proposed to explain the two photoluminescence peaks around the A exciton energy region. This work provides the first broadband optical characterization of these 2D dilute magnetic semiconductors, shedding light on the novel and tunable electronic features of V‐doped WS2 monolayers.
more »
« less
Sulfur Vacancy Related Optical Transitions in Graded Alloys of Mo x W 1‐x S 2 Monolayers
Abstract Engineering electronic bandgaps is crucial for applications in information technology, sensing, and renewable energy. Transition metal dichalcogenides (TMDCs) offer a versatile platform for bandgap modulation through alloying, doping, and heterostructure formation. Here, the synthesis of a 2D MoxW1‐xS2graded alloy is reported, featuring a Mo‐rich center that transitions to W‐rich edges, achieving a tunable bandgap of 1.85 to 1.95 eV when moving from the center to the edge of the flake. Aberration‐corrected high‐angle annular dark‐field scanning transmission electron microscopy showed the presence of sulfur monovacancy, VS, whose concentration varied across the graded MoxW1‐xS2layer as a function of Mo content with the highest value in the Mo‐rich center region. Optical spectroscopy measurements supported by ab initio calculations reveal a doublet electronic state of VS, which is split due to the spin‐orbit interaction, with energy levels close to the conduction band or deep in the bandgap depending on whether the vacancy is surrounded by W atoms or Mo atoms. This unique electronic configuration of VSin the alloy gave rise to four spin‐allowed optical transitions between the VSlevels and the valence bands. The study demonstrates the potential of defect and optical engineering in 2D monolayers for advanced device applications.
more »
« less
- Award ID(s):
- 2152159
- PAR ID:
- 10611082
- Publisher / Repository:
- Advanced Materials
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 12
- Issue:
- 11
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-dimensional (2D) tungsten disulfide nanosheets (WS2) could be a promising candidate for high-performance self-powered photodetectors. The present 2D nanosheets were obtained from liquid exfoliation in a mixture of ethanol, methanol, and isopropanol via a direct dispersion and ultrasonication method. Using the spin-coating technique, a thin film of uniform thickness was formed on the SiO2/Si substrate. Energy-dispersive X-ray analysis showed that the S/W ratio in the fabricated WS2 film was around 1.2 to 1.34, indicating certain deficiencies in the S atoms. These S vacancies induce localized states within the bandgap of pristine WS2, resulting in a higher conductivity in the exfoliated sample. The obtained thin film seems to be highly efficient in photoelectric conversion, with a responsivity of ~0.12 mA/W at 670 nm under zero bias voltage, with an intensity of 5.2 mW/cm2. Instead, at a bias of 2 V, it exhibits a responsivity of 12.74 mA/W and a detectivity of 1.17 × 1010 cm Hz1/2 W− 1 at 4.1 mW/cm2. The present 2D nanosheets exhibit high photon absorption in a wide range of spectra from the near infrared (IR) to near UV spectrum.more » « less
-
null (Ed.)Rocksalt structure nitrides emerge as a promising class of semiconductors for high-temperature thermoelectric and plasmonic applications. Controlling the bandgap and strain is essential for the development of a wide variety of electronic devices. Here we use (Ti 0.5 Mg 0.5 ) 1−x Al x N as a model system to explore and demonstrate the tunability of both the bandgap and the strain state in rocksalt structure nitrides, employing a combined experimental and computational approach. (Ti 0.5 Mg 0.5 ) 1−x Al x N layers with x ≤ 0.44 deposited on MgO(001) substrates by reactive co-sputtering at 700 °C are epitaxial single crystals with a solid-solution B1 rocksalt structure. The lattice mismatch with the substrate decreases with increasing x , leading to a transition in the strain-state from partially relaxed (74% and 38% for x = 0 and 0.09) to fully strained for x ≥ 0.22. First-principles calculations employing 64-atom Special Quasirandom Structures (SQS) indicate that the lattice constant decreases linearly with x according to a = (4.308 − 0.234 x ) Å for 0 ≤ x ≤ 1. In contrast, the measured relaxed lattice parameter a o = (4.269 − 0.131 x ) Å is linear only for x ≤ 0.33, its composition dependence is less pronounced, and x > 0.44 leads to the nucleation of secondary phases. The fundamental (indirect) bandgap predicted using the same SQS supercells and the HSE06 functional increases from 1.0 to 2.6 eV for x = 0–0.75. In contrast, the onset of the measured optical absorption due to interband transitions increases only from 2.3 to 2.6 eV for x = 0–0.44, suggesting that the addition of Al in the solid solution relaxes the electron momentum conservation and causes a shift from direct to indirect gap transitions. The resistivity increases from 9.0 to 708 μΩ m at 77 K and from 6.8 to 89 μΩ m at 295 K with increasing x = 0–0.44, indicating an increasing carrier localization associated with a randomization of cation site occupation and the increasing bandgap which also causes a 33% reduction in the optical carrier concentration. The overall results demonstrate bandgap and strain engineering in rocksalt nitride semiconductors and show that, in contrast to conventional covalent semiconductors, the random cation site occupation strongly affects optical transitions.more » « less
-
Abstract Chalcogel represents a unique class of meso‐ to macroporous nanomaterials that offer applications in energy and environmental pursuits. Here, the synthesis of an ion‐exchangeable amorphous chalcogel using a nominal composition of K2CoMo2S10(KCMS) at room temperature is reported. Synchrotron X‐ray pair distribution function (PDF), X‐ray absorption near‐edge structure (XANES), and extended X‐ray absorption fine structure (EXAFS) reveal a plausible local structure of KCMS gel consisting of Mo5+2and Mo4+3clusters in the vicinity of di/polysulfides which are covalently linked by Co2+ions. The ionically bound K+ions remain in the percolating pores of the Co–Mo–S covalent network. XANES of Co K‐edge shows multiple electronic transitions, including quadrupole (1s→3d), shakedown (1s→4p + MLCT), and dipole allowed 1s→4p transitions. Remarkably, despite a lack of regular channels as in some crystalline solids, the amorphous KCMS gel shows ion‐exchange properties with UO22+ions. Additionally, it also presents surface sorption via [S∙∙∙∙UO22+] covalent interactions. Overall, this study underscores the synthesis of quaternary chalcogels incorporating alkali metals and their potential to advance separation science for cations and oxo‐cationic species by integrating a synergy of surface sorption and ion‐exchange.more » « less
-
Variable‐angle spectroscopic ellipsometry is used to determine the room temperature complex refractive index of molecular beam epitaxy grown GaSb1−xBixfilms withx ≤ 4.25% over a spectral range of 0.47–6.2 eV. By correlating to critical points in the extinction coefficientk, the energies of several interband transitions are extracted as functions of Bi content. The observed change in the fundamental bandgap energy (E0, −36.5 meV per %Bi) agrees well with previously published values; however, the samples examined here show a much more rapid increase in the spin‐orbit splitting energy (Δ0, +30.1 meV per Bi) than previous calculations have predicted. As in the related GaAsBi, the energy of transitions involving the top of the valence band are observed to have a much stronger dependence on Bi content than those that do not, suggesting the valence band maximum is most sensitive to Bi alloying. Finally, the effects of surface droplets on both the complex refractive index and the critical point energies are examined.more » « less
An official website of the United States government

