skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Buffering of Aerosol‐Cloud Adjustments by Coupling Between Radiative Susceptibility and Precipitation Efficiency
Abstract Aerosol‐cloud interactions (ACI) in warm clouds are the primary source of uncertainty in effective radiative forcing (ERF) during the historical period and, by extension, inferred climate sensitivity. The ERF due to ACI (ERFaci) is composed of the radiative forcing due to changes in cloud microphysics and cloud adjustments to microphysics. Here, we examine the processes that drive ERFaci using a perturbed parameter ensemble (PPE) hosted in CAM6. Observational constraints on the PPE result in substantial constraints in the response of cloud microphysics and macrophysics to anthropogenic aerosol, but only minimal constraint on ERFaci. Examination of cloud and radiation processes in the PPE reveal buffering of ERFaci by the interaction of precipitation efficiency and radiative susceptibility.  more » « less
Award ID(s):
2019625
PAR ID:
10611129
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Geophysical Research Letters
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract By examining the historical temperature record during the industrial era, we can infer the climate's sensitivity to radiative perturbations, given knowledge of historical forcings. Energy conservation enforces a negative correlation between the climate feedback and historical forcing for a given change in global‐mean temperature. Here, we examine the negative correlation between the radiative forcing due to aerosol‐cloud interactions and the shortwave cloud feedback to warming that appears in a perturbed parameter ensemble (PPE). The PPE is not tuned to match the historical record, yet a negative correlation emerges over the extratropics due to the combined effects of liquid cloud precipitation efficiency and radiative saturation in the shortwave. Using an energy balance model, we argue that these processes combine to push Earth System Models to yield a temperature record in keeping with observations, but also limit our ability to constrain future warming posterior with the temperature record. 
    more » « less
  2. Abstract. Aerosol–cloud interactions (ACIs) are considered to be the most uncertaindriver of present-day radiative forcing due to human activities. Thenonlinearity of cloud-state changes to aerosol perturbations make itchallenging to attribute causality in observed relationships of aerosolradiative forcing. Using correlations to infer causality can be challengingwhen meteorological variability also drives both aerosol and cloud changesindependently. Natural and anthropogenic aerosol perturbations from well-defined sources provide “opportunistic experiments” (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change. 
    more » « less
  3. Aerosol-cloud interactions (ACIs) are vital for regulating Earth’s climate by influencing energy and water cycles. Yet, effects of ACI bear large uncertainties, evidenced by systematic discrepancies between observed and modeled estimates. This study quantifies a major bias in ACI determinations, stemming from conventional surface or space measurements that fail to capture aerosol at the cloud level unless the cloud is coupled with land surface. We introduce an advanced approach to determine radiative forcing of ACI by accounting for cloud-surface coupling. By integrating field observations, satellite data, and model simulations, this approach reveals a drastic alteration in aerosol vertical transport and ACI effects caused by cloud coupling. In coupled regimes, aerosols enhance cloud droplet number concentration across the boundary layer more homogeneously than in decoupled conditions, under which aerosols from the free atmosphere predominantly affect cloud properties, leading to marked cooling effects. Our findings spotlight cloud-surface coupling as a key factor for ACI quantification, hinting at potential underassessments in traditional estimates. 
    more » « less
  4. Abstract This paper describes the atmospheric component of the US Department of Energy's Energy Exascale Earth System Model (E3SM) version 3. Significant updates have been made to the atmospheric physics compared to earlier versions. Specifically, interactive gas chemistry has been implemented, along with improved representations of aerosols and dust emissions. A new stratiform cloud microphysics scheme more physically treats ice processes and aerosol‐cloud interactions. The deep convection parameterization has been largely improved with sophisticated microphysics for convective clouds, making model convection sensitive to large‐scale dynamics, and incorporating the dynamical and physical effects of organized mesoscale convection. Improvements in aerosol wet removal processes and parameter re‐tuning of key aerosol and cloud processes have improved model aerosol radiative forcing. The model's vertical resolution has increased from 72 to 80 layers with the extra eight layers added in the lower stratosphere to better simulate the Quasi‐Biennial Oscillation. These improvements have enhanced E3SM's capability to couple aerosol, chemistry, and biogeochemistry and reduced some long‐standing biases in simulating tropical variability. Compared to its predecessors, the model shows a much stronger signal for the Madden‐Julian Oscillation, Kelvin waves, mixed Rossby‐gravity waves, and eastward inertia‐gravity waves. Aerosol radiative forcing has been considerably reduced and is now better aligned with community best estimates, leading to significantly improved skill in simulating historical temperature records. Its simulated mean‐state climate is largely comparable to E3SMv2, but with some notable degradation in shortwave cloud radiative effect, precipitable water, and surface wind stress, which will be addressed in future updates. 
    more » « less
  5. Abstract The aerosol indirect effect (AIE) dominates uncertainty in total anthropogenic aerosol forcing in phase 6 of the Coupled Model Intercomparison Project (CMIP6) models. AIE strength depends on meteorological conditions that have been shown to change between preindustrial (PI) and present-day (PD) climates, such as cloud cover and atmospheric moisture. Hence, AIE strength may depend on background climate state, impacting the dependence of model-based AIE estimates on experiment design or the evolution of AIE strength with intensifying climate change, which has not previously been explicitly evaluated. Using atmosphere-only simulations with prescribed observed sea surface temperatures (SSTs) and sea ice in the National Center for Atmospheric Research (NCAR) Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), model, we impose a PD (2000) aerosol perturbation onto a PI (1850), PD, and PD with a uniform 4 K increase in the SST (PD + 4 K) background climate to assess the dependence of the total aerosol effective radiative forcing (ERF) and AIE on background climate. We find statistically insignificant increases in aerosol ERF when estimated in the different background climates, almost entirely from increases in direct ERF but with some regionally significant compensating signals in PD + 4 K. The absence of an AIE dependence on background climate in our PD simulation may be tied to documented differences in cloud responses to the observed SSTs used in our simulations versus SSTs produced by the fully coupled models from which most cloud feedback studies are derived, known as the “pattern effect.” Our findings indicate that AIE and aerosol forcing overall may not have a strong dependence on the background climate state in the near future but could regionally under extreme climate change. Significance StatementDiverse model representations of aerosol–cloud interactions strongly contribute to uncertainty in historical anthropogenic aerosol forcing and are associated with uncertainty in climate sensitivity. This study aims to highlight the dependence of aerosol indirect effects on the background climate state in Community Earth System Model 2, version 2.1.3 (CESM2), Community Atmosphere Model, version 6.0 (CAM6), by identifying microphysical and meteorological changes between aerosol-driven atmospheric responses in present-day and preindustrial climate states to understand anthropogenic aerosol-driven forcing more thoroughly. 
    more » « less