skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment
ABSTRACT New approaches for combating microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen,Salmonella entericaserotype Typhimurium (S. Typhimurium), in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy. Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome,acrABis required for growth, the EPM analogs are bacteriostatic, and the EPM analogs increase the potency of antibiotics. These data suggest that under macrophage-like conditions, the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics. IMPORTANCEBacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.  more » « less
Award ID(s):
2133243
PAR ID:
10611140
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Hughes, Kelly T
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mBio
Volume:
14
Issue:
6
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an urgent need to find novel treatments for combating multidrug-resistant bacteria. Multidrug efflux pumps that expel antibiotics out of cells are major contributors to this problem. Therefore, using efflux pump inhibitors (EPIs) is a promising strategy to increase antibiotic efficacy. However, there are no EPIs currently approved for clinical use especially because of their toxicity. This study investigates sodium malonate, a natural, non-hazardous, small molecule, for its use as a novel EPI of AcrAB-TolC, the main multidrug efflux pump of the Enterobacteriaceae family. Using ethidium bromide accumulation experiments, we found that 25 mM sodium malonate inhibited efflux by the AcrAB-TolC and other MDR pumps of Escherichia coli to a similar degree than 50 μΜ phenylalanine-arginine-β-naphthylamide, a well-known EPI. Using minimum inhibitory concentration assays and molecular docking to study AcrB-ligand interactions, we found that sodium malonate increased the efficacy of ethidium bromide and the antibiotics minocycline, chloramphenicol, and ciprofloxacin, possibly via binding to multiple AcrB locations, including the AcrB proximal binding pocket. In conclusion, sodium malonate is a newly discovered EPI that increases antibiotic efficacy. Our findings support the development of malonic acid/sodium malonate and its derivatives as promising EPIs for augmenting antibiotic efficacy when treating multidrug-resistant bacterial infections. 
    more » « less
  2. null (Ed.)
    The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called “dominant negative” effect. Being one of the most intensively studied bacterial multidrug efflux pumps, many AcrA and AcrB mutations have been reported that disrupt efflux through different mechanisms. We examined five groups of AcrB and AcrA mutants, defective in different aspects of assembly and substrate efflux. We found that none of them demonstrated the expected dominant negative effect, even when expressed at concentrations many folds higher than their genomic counterpart. The assembly of the AcrAB-TolC complex appears to have a proof-read mechanism that effectively eliminated the formation of futile pump complex. 
    more » « less
  3. ABSTRACT Enterobacteriaceae possess eight TolC‐dependent multidrug efflux pumps: AcrAB‐TolC, AcrAD‐TolC, AcrEF‐TolC, MdtEF‐TolC, MdtABC‐TolC, EmrAB‐TolC, EmrYK‐TolC, and MacAB‐TolC, which efflux bile salts, antibiotics, metabolites, or other compounds. However, our understanding of their physiological roles remains limited, especially for less‐studied pumps like EmrYK‐TolC. In this study, we tested the effects on swimming motility and growth under stress conditions ofEscherichia colimutants individually deleted for each inner‐membrane transporter component of all eight TolC‐dependent pumps, a mutant deleted for the AcrB‐accessory protein AcrZ, and a mutant simultaneously deleted for all eight pumps (ΔtolC). We found that all mutants tested, except the ΔemrYand ΔacrZmutants, displayed increased swimming motility. Additionally, the loss of each individual TolC‐dependent pump or AcrZ did not reduce growth and sometimes even enhanced it compared to the parental strain under various growth conditions: temperature (LB at 25, 30, 37, and 42°C), pH (LB at pH 6.0, 7.4, and 9.0; and LB buffered to pH 6.0, 7.4, and 8.25), LB with limited air exchange, and nutritional stress (M9‐glucose or M9‐glycerol). In contrast, the ΔtolCmutant grew significantly slower than the parental strain under all conditions tested except in LB‐TRIS pH 7.4 and LB with limited air exchange. Overall, these findings indicate that while individual TolC‐dependent pumps are generally dispensable for growth under many stress conditions in the absence of antimicrobials, possibly due to their partially overlapping substrate profiles, TolC‐dependent efflux is required for maximal growth under most conditions. 
    more » « less
  4. Bradford, Patricia A. (Ed.)
    ABSTRACT The transcriptional repressor AcrR is the main regulator of the multidrug efflux pump AcrAB-TolC, which plays a major role in antibiotic resistance and cell physiology in Escherichia coli and other Enterobacteriaceae . However, it remains unknown which ligands control the function of AcrR. To address this gap in knowledge, this study tested whether exogenous and/or endogenous molecules identified as potential AcrR ligands regulate the activity of AcrR. Using electrophoretic mobility shift assays (EMSAs) with purified AcrR and the acrAB promoter and in vivo gene expression experiments, we found that AcrR responds to both exogenous molecules and cellular metabolites produced by E. coli . In total, we identified four functional ligands of AcrR, ethidium bromide (EtBr), an exogenous antimicrobial known to be effluxed by the AcrAB-TolC pump and previously shown to bind to AcrR, and three polyamines produced by E. coli , namely, putrescine, cadaverine, and spermidine. We found that EtBr and polyamines bind to AcrR both in vitro and in vivo , which prevents the binding of AcrR to the acrAB promoter and, ultimately, induces the expression of acrAB . Finally, we also found that AcrR contributes to mitigating the toxicity produced by excess polyamines by directly regulating the expression of AcrAB-TolC and two previously unknown AcrR targets, the MdtJI spermidine efflux pump and the putrescine degradation enzyme PuuA. Overall, these findings significantly expand our understanding of the function of AcrR by revealing that this regulator responds to different exogenous and endogenous ligands to regulate the expression of multiple genes involved in efflux and detoxification. IMPORTANCE Multidrug efflux pumps can remove antibiotics and other toxic molecules from cells and are major contributors to antibiotic resistance and bacterial physiology. Therefore, it is essential to better understand their function and regulation. AcrAB-TolC is the main multidrug efflux pump in the Enterobacteriaceae family, and AcrR is its major transcriptional regulator. However, little is known about which ligands control the function of AcrR or which other genes are controlled by this regulator. This study contributes to addressing these gaps in knowledge by showing that (i) the activity of AcrR is controlled by the antimicrobial ethidium bromide and by polyamines produced by E. coli , and (ii) AcrR directly regulates the expression of AcrAB-TolC and genes involved in detoxification and efflux of excess polyamines. These findings significantly advance our understanding of the biological role of AcrR by identifying four ligands that control its function and two novel targets of this regulator. 
    more » « less
  5. Zhou, Ning-Yi (Ed.)
    ABSTRACT Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-culturedEscherichia coliK-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical’s lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0,acrAandemrAwere upregulated in the log phase, whereasmdtEexpression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers. 
    more » « less