skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 7, 2026

Title: Discovery of Two Ultra-diffuse Galaxies with Unusually Bright Globular Cluster Luminosity Functions via a Mark-dependently Thinned Point Process (MATHPOP)
We present MArk-dependently THinned POint Process (Mathpop), a novel method to infer the globular cluster (GC) counts in ultra-diffuse galaxies (UDGs) and low-surface brightness galaxies (LSBGs). Many known UDGs have a surprisingly high ratio of GC number to surface brightness. However, standard methods to infer GC counts in UDGs face various challenges, such as photometric measurement uncertainties, GC membership uncertainties, and assumptions about the GC luminosity functions (GCLFs). Mathpop tackles these challenges using the mark-dependent thinned point process, enabling joint inference of the spatial and magnitude distributions of GCs. In doing so, Mathpop allows us to infer and quantify the uncertainties in both GC counts and GCLFs with minimal assumptions. As a precursor to Mathpop, we also address the data uncertainties coming from the selection process of GC candidates: we obtain probabilistic GC candidates instead of the traditional binary classification based on the color–magnitude diagram. We apply Mathpop to 40 LSBGs in the Perseus cluster using GC catalogs from a Hubble Space Telescope imaging program. We then compare our results to those from an independent study using the standard method. We further calibrate and validate our approach through extensive simulations. Our approach reveals two LSBGs having GCLF turnover points much brighter than the canonical value with Bayes’ factor being ∼4.5 and ∼2.5, respectively. An additional crude maximum-likelihood estimation and simulation study show that their GCLF TO points are approximately 0.9 mag and 1.1 mag brighter than the canonical value, with p-values of ∼10^−8 and ∼10^−5, respectively.  more » « less
Award ID(s):
2308390
PAR ID:
10611198
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
984
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributions remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs. 
    more » « less
  2. ABSTRACT We present Hubble Space Telescope ACS/WFC and WFC3/UVIS imaging for a sample of 50 low-surface brightness (LSB) galaxies in the $$\sim 10^{15}$$ M$$_{\odot }$$ Perseus cluster, which were originally identified in ground-based imaging. We measure the structural properties of these galaxies and estimate the total number of globular clusters (GCs) they host. Around half of our sample galaxies meet the strict definition of an ultra-diffuse galaxy (UDG), while the others are UDG-like but are either somewhat more compact or slightly brighter. A small number of galaxies reveal systems with many tens of GCs, rivalling some of the richest GC systems known around UDGs in the Coma cluster. We find the sizes of rich GC systems, in terms of their half-number radii, extending to $$\sim$$1.2 times the half-light radii of their host galaxy on average. The mean colours of the GC systems are the same, within the uncertainties, as those of their host galaxy stars. This suggests that GCs and galaxy field stars may have formed at the same epoch from the same enriched gas. It may also indicate a significant contribution from disrupted GCs to the stellar component of the host galaxy as might be expected in the ‘failed galaxy’ formation scenario for UDGs. 
    more » « less
  3. ABSTRACT This study compiles stellar populations and internal properties of ultra-diffuse galaxies (UDGs) to highlight correlations with their local environment, globular cluster (GC) richness, and star formation histories. Complementing our sample of 88 UDGs, we include 36 low surface brightness dwarf galaxies with UDG-like properties, referred to as NUDGes (nearly UDGs). All galaxies were studied using the same spectral energy distribution fitting methodology to explore what sets UDGs apart from other galaxies. We show that NUDGes are similar to UDGs in all properties except for being, by definition, smaller and having higher surface brightness. We find that UDGs and NUDGes show similar behaviours in their GC populations, with the most metal-poor galaxies hosting consistently more GCs on average. This suggests that GC content may provide an effective way to distinguish extreme galaxies within the low surface brightness regime alongside traditional parameters like size and surface brightness. We confirm previous results using clustering algorithms that UDGs split into two main classes, which might be associated with the formation pathways of a puffy dwarf and a failed galaxy. The clustering applied to the UDGs + NUDGes data set yields an equivalent result. The difference in mass contained in the GC system suggests that galaxies in different environments have not simply evolved from one another but may have formed through distinct processes. 
    more » « less
  4. Abstract Low-surface-brightness galaxies (LSBGs) are excellent probes of quenching and other environmental processes near massive galaxies. We study an extensive sample of LSBGs near massive hosts in the local universe that are distributed across a diverse range of environments. The LSBGs with surface-brightness μ eff , g > 24.2 mag arcsec 2 are drawn from the Dark Energy Survey Year 3 catalog while the hosts with masses 9.0 < log ( M / M ) < 11.0 comparable to the Milky Way and the Large Magellanic Cloud are selected from the z0MGS sample. We study the projected radial density profiles of LSBGs as a function of their color and surface brightness around hosts in both the rich Fornax–Eridanus cluster environment and the low-density field. We detect an overdensity with respect to the background density, out to 2.5 times the virial radius for both hosts in the cluster environment and the isolated field galaxies. When the LSBG sample is split byg−icolor or surface brightnessμeff,g, we find the LSBGs closer to their hosts are significantly redder and brighter, like their high-surface-brightness counterparts. The LSBGs form a clear “red sequence” in both the cluster and isolated environments that is visible beyond the virial radius of the hosts. This suggests preprocessing of infalling LSBGs and a quenched backsplash population around both host samples. More so, the relative prominence of the “blue cloud” feature implies that preprocessing is ongoing near the isolated hosts compared to the cluster environment where the LSBGs are already well processed. 
    more » « less
  5. ABSTRACT We use spectral energy distribution fitting to place constraints on the stellar populations of 59 ultra-diffuse galaxies (UDGs) in the low-to-moderate density fields of the MATLAS survey. We use the routine prospector, coupled with archival data in the optical from the Dark Energy Camera Legacy Survey, and near- and mid-infrared imaging from the Wide-field Infrared Survey Explorer, to recover the stellar masses, ages, metallicities, and star formation time-scales of the UDGs. We find that a subsample of the UDGs lies within the scatter of the mass–metallicity relation (MZR) for local classical dwarfs. However, another subsample is more metal-poor, being consistent with the evolving MZR at high redshift. We investigate UDG positioning trends in the mass–metallicity plane as a function of surface brightness, effective radius, axis ratio, local volume density, mass-weighted age, star formation time-scale, globular cluster (GC) counts, and GC specific frequency. We find that our sample of UDGs can be separated into two main classes: Class A: comprised of UDGs with lower stellar masses, prolonged star formation histories (SFHs), more elongated, inhabiting less dense environments, hosting fewer GCs, younger, consistent with the classical dwarf MZR, and fainter. Class B: UDGs with higher stellar masses, rapid SFHs, rounder, inhabiting the densest of our probed environments, hosting on average the most numerous GC systems, older, consistent with the high-redshift MZR (i.e. consistent with early-quenching), and brighter. The combination of these properties suggests that UDGs of Class A are consistent with a ‘puffed-up dwarf’ formation scenario, while UDGs of Class B seem to be better explained by ‘failed galaxy’ scenarios. 
    more » « less