skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 3, 2026

Title: Plow versus Ice Age: Erosion rate variability from glacial–interglacial climate change is an order of magnitude lower than agricultural erosion in the Upper Mississippi River Valley, USA
Abstract Historical accounts suggest that Euro-American agricultural practices (post–1850 CE) accelerated soil erosion in the Paleozoic Plateau of the Upper Mississippi River Valley (USA). However, the magnitude of this change compared to longer-term Late Pleistocene rates is poorly constrained. Such context is necessary to assess how erosion rates under natural, high-magnitude climate and eco-geomorphic change compare against Euro-American agricultural erosion rates. We pair cosmogenic 10Be analyses and optically stimulated luminescence (OSL) ages from samples of alluvium to build a paleoerosion-rate chronology for Trout Creek in southeastern Minnesota (USA). Erosion rates and their associated integration periods are 0.069–0.073 mm yr−1 (32–20 ka), 0.049 mm yr−1 (28–14 ka), and 0.053 mm yr−1 (14–0 ka). Based on previous studies, we relate these rates to (1) the transition from forest to permafrost at the onset of the Last Glacial Maximum, (2) the decline of permafrost coupled with limited vegetation, and (3) climate warming and vegetation re-establishment. These pre-settlement erosion rates are 8× to 12× lower than Euro-American agricultural erosion rates previously quantified in the region. Despite a limited sample size, our observed rapid increase in erosion rates mirrors other sharply rising anthropogenic environmental impacts within the past several centuries. Our results demonstrate that agricultural erosion rates far exceed climate-induced erosion-rate magnitude and variability during the shift from the last glaciation into the Holocene.  more » « less
Award ID(s):
1944782
PAR ID:
10611226
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Geology
Date Published:
Journal Name:
Geology
Volume:
53
Issue:
6
ISSN:
0091-7613
Page Range / eLocation ID:
535 to 539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Erosion degrades soils and undermines agricultural productivity. For agriculture to be sustainable, soil erosion rates must be low enough to maintain fertile soil. Hence, quantifying both pre-agricultural and agricultural erosion rates is vital for determining whether farming practices are sustainable. However, there have been few measurements of pre-agricultural erosion rates in major farming areas where soils form from Pleistocene deposits. We quantified pre-agricultural erosion rates in the midwestern United States, one of the world's most productive agricultural regions. We sampled soil profiles from 14 native prairies and used in situ–produced 10Be and geochemical mass balance to calculate physical erosion rates. The median pre-agricultural erosion rate of 0.04 mm yr–1 is orders of magnitude lower than agricultural values previously measured in adjacent fields, as is a site-averaged diffusion coefficient (0.005 m2 yr–1) calculated from erosion rate and topographic curvature data. The long-term erosion rates are also one to four orders of magnitude lower than the assumed 1 mm yr–1 soil loss tolerance value assigned to these locations by the U.S. Department of Agriculture. Hence, quantifying long-term erosion rates using cosmogenic nuclides provides a means for more robustly defining rates of tolerable erosion and for developing management guidelines that promote soil sustainability. 
    more » « less
  2. Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle. 
    more » « less
  3. The rate of chemical weathering has been observed to increase with the rate of physical erosion in published comparisons of many catchments, but the mechanisms that couple these processes are not well understood. We investigated this question by exam- ining the chemical weathering and porosity profiles from catchments developed on marine shale located in Pennsylvania, USA (Susquehanna Shale Hills Critical Zone Observatory, SSHCZO); California, USA (Eel River Critical Zone Observatory, ERC- ZO); and Taiwan (Fushan Experimental Forest). The protolith compositions, protolith porosities, and the depths of regolith at these sites are roughly similar while the catchments are characterized by large differences in erosion rate (1–3 mm yr􏱝1 in Fushan 􏱞 0.2–0.4 mm yr􏱝1 in ERCZO 􏱞 0.01–0.025 mm yr􏱝1 in SSHCZO). The natural experiment did not totally isolate erosion as a variable: mean annual precipitation varied along the erosion gradient (4.2 m yr􏱝1 in Fushan > 1.9 m yr􏱝1 in ERCZO > 1.1 m yr􏱝1 in SSHCZO), so the fastest eroding site experiences nearly twice the mean annual temperature of the other two. Even though erosion rates varied by about 100􏱟, the depth of pyrite and carbonate depletion (defined here as regolith thickness) is roughly the same, consistent with chemical weathering of those minerals keeping up with erosion at the three sites. These minerals were always observed to be the deepest to react, and they reacted until 100% depletion. In two of three of the catchments where borehole observations were available for ridges, these minerals weathered across narrow reaction fronts. On the other hand, for the rock-forming clay mineral chlorite, the depth interval of weathering was wide and the extent of depletion observed at the land surface decreased with increasing erosion/precipitation. Thus, chemical weathering of the clay did not keep pace with erosion rate. But perhaps the biggest difference among the shales is that in the fast-eroding sites, microfractures account for 30–60% of the total porosity while in the slow-eroding shale, dissolution could be directly related to secondary porosity. We argue that the microfractures increase the influx of oxygen at depth and decrease the size of diffusion-limited internal domains of matrix, accelerating weathering of pyrite and carbonate under high erosion-rate condi- tions. Thus, microfracturing is a process that can couple physical erosion and chemical weathering in shales. 
    more » « less
  4. Abstract Erosion of landscapes underlaid by permafrost can transform sediment and nutrient fluxes, surface and subsurface hydrology, soil properties, and rates of permafrost thaw, thus changing ecosystems and carbon emissions in high latitude regions with potential implications for global climate. However, future rates of erosion and sediment transport are difficult to predict as they depend on complex interactions between climatic and environmental parameters such as temperature, precipitation, permafrost, vegetation, wildfires, and hydrology. Thus, despite the potential influence of erosion on the future of the Arctic and global systems, the relations between erosion‐rate and these parameters, as well as their relative importance, remain largely unquantified. Here we quantify these relations based on a sedimentary record from Burial Lake, Alaska, one of the richest datasets of Arctic lake deposits. We apply a set of bi‐ and multi‐variate techniques to explore the association between the flux of terrigenous sediments into the lake (a proxy for erosion‐rate) and a variety of biogeochemical sedimentary proxies for paleoclimatic and environmental conditions over the past 25 cal ka BP. Our results show that erosion‐rate is most strongly associated with temperature and vegetation proxies, and that erosion‐rate decreases with increased temperature, pollen‐counts, and abundance of pollen from shrubs and trees. Other proxies, such as those associated with fire frequency, aeolian dust supply, mass wasting and hydrologic conditions, play a secondary role. The marginal effects of the sedimentary‐proxies on erosion‐rate are often threshold dependent, highlighting the potential for strong non‐linear changes in erosion in response to future changes in Arctic conditions. 
    more » « less
  5. Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. (Ed.)
    Since the early 2000s, observations from 14 coastal permafrost sites have been updated, providing a synopsis of how changes in the Arctic System are intensifying the dynamics of permafrost coasts in the 21st Century. Observations from all but 1 of the 14 permafrost coastal sites around the Arctic indicate that decadal-scale erosion rates are increasing. The US and Canadian Beaufort Sea coasts have experienced the largest increases in erosion rates since the early-2000s. The mean annual erosion rate in these regions has increased by 80 to 160 % at the five sites with available data, with sites in the Canadian Beaufort Sea experiencing the largest relative increase. The sole available site in the Greenland Sea, on southern Svalbard, indicates an increase in mean annual erosion rates by 66 % since 2000, due primarily to a reduction in nearshore sediment supply from glacial recession. At the five sites along the Barents, Kara, and Laptev Seas in Siberia, mean annual erosion rates increased between 33 and 97 % since the early to mid-2000s. The only site to experience a decrease in mean annual erosion (- 40%) was located in the Chukchi Sea in Alaska. Interestingly, the other site in the Chukchi Sea experienced one of the highest increases in mean annual erosion (+160%) over the same period. In general, a considerable increase in the variability of erosion and deposition intensity was also observed along most of the sites. 
    more » « less