skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 23, 2026

Title: BOARD # 335: CAREER: Basics Matter: The Role of Space and Documents in Supporting Critical Conversations and Inclusion on an NSF Funded Engineering Education Research Group
Engineering education research groups strive to transform the field of engineering through the integration of research and practice. Many of these research groups are interdisciplinary, including individuals from different fields (e.g., engineering, engineering education, education, sociology) and different roles within an institution. These individuals bring their own approaches to the generation, expression, and application of knowledge. While these epistemic differences can support the use of novel, interdisciplinary approaches, they can also lead to tensions that prevent groups from meeting their core goals. The goal of this project is to explore how engineering education research groups navigate these epistemic differences and engage in critical conversations to make research decisions. In Phase A of our study, we used Longino’s Critical Contextual Empiricism framework, which defines four norms of an idealized knowledge generating community to characterize the epistemic culture of the groups we studied. In this paper, we focus on how the norm of providing venues for critique and idea sharing supports critical conversations and inclusion among group members. We identified three affordances related to a group’s use of shared agendas, a type of venue that facilitate discussion of multiple project efforts, facilitate participation, and support group memory. Our work shows the importance of considering the details of the venue used to hold group meetings and how aspects of these spaces can support critical interactions among group members.  more » « less
Award ID(s):
2346868
PAR ID:
10611380
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society for Engineering Education Annual Conference
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This Work-In-Progress paper highlights the work being done as part of an on-going project to explore the field of Engineering Education Research (EER) through the perspective of the peer review process. The overarching objective of this project is to identify the kinds of scholarship readily accepted into the field of engineering education research through peer review processes, and the kinds that are not. By identifying what approaches, topics, theoretical frameworks, and methodologies are accepted and not accepted through the peer review process, the field can be more open to discussion of the advancement of EER. More broadly, identifying such boundary knowledge can facilitate new understanding of how the social construction of knowledge occurs in interdisciplinary fields beyond engineering education. As a first step toward these larger objectives, we review relevant literature and outline our participants as well as our analytic plan. 
    more » « less
  2. This paper reports on research that is part of a broader National Science Foundation (NSF)-funded, Innovations in Graduate Education (IGE) project. The project aims to enhance the research culture and broaden the participation in research of underrepresented groups within graduate engineering programs at a mid-sized historically black college or university. The project includes three initiatives that seek to assist in the development of a “research engineer identity” among the graduate students pursuing research-based degrees in the college. One of the three initiatives of the project, and focus of this paper, involves the development of a survey-based Research Engineer Identity Scale (REIS). A two stage sequential mixed-method research design is being used to develop the scale. This paper focuses on the first stage in the design which involved conducting focus groups with research engineers to gain insight into the content, character, and complications associated with internalizing a Research Engineer Identity (REI) in general and among people from underrepresented groups in particular. We report on four semi-structured focus groups that each lasted approximately 90 minutes in Fall 2019. Each focus group included about 6 to 9 faculty members, industry professionals, or graduate students who actively engaged in engineering research in the Southeastern United States. Focus group participants represented various academic disciplines within engineering as well as a range of demographic characteristics such as sex, race, ethnicity, and citizenship status. The focus group conversations were transcribed and transcriptions were entered into NVivo for coding and analysis. Inter-rater reliability procedures were used to ensure consistency of coding. This paper reports on the themes that emerged within the focus group discussions regarding what it means to “be a research engineer.” The findings describe similarities and differences across demographic characteristics in regard to the content, character, and complications associated with efforts to develop a Research Engineer Identity. The paper concludes by briefly describing the process that will be used to transform the emergent themes into pool of items to be included in a web-based questionnaire designed to measure Research Engineer Identity. 
    more » « less
  3. Two project-based learning approaches were implemented in a 100-level information literacy class in the Mechanical Engineering program at a mid-Atlantic university. One approach, the treatment group, partnered engineering students with education students to develop and deliver engineering lessons that guide elementary school students through the engineering design process. In the second approach, the comparison group, engineering students were partnered with their engineering classmates to work on an engineering problem using the engineering design process. The two projects were designed to have similar durations and course point values. For both projects, teams were formed, and peer evaluations were completed, using the Comprehensive Assessment of Team Member Effectiveness (CATME) survey. This study examined how the two project-based learning approaches affected students' teamwork effectiveness. Data was collected from undergraduate engineering students assigned to groups in the comparison and treatment conditions from Fall 2019 to Fall 2022. Data was collected electronically through the CATME teammate evaluations and project reflections (treatment, n = 137; comparison, n = 112). CATME uses a series of questions assessed on a 5-point Likert scale. Quantitative analysis using Analysis of Variance (ANOVA) and Covariance (ANCOVA) showed that engineering students in the treatment group expected more quality, were more satisfied, and had more task commitment than engineering students working within their discipline. However, no statistically significant differences were observed for teamwork effectiveness categories such as contribution to the team’s work, interaction with teammates, keeping the team on track, and having relevant knowledge, skills, and abilities. This result suggests that engineering students who worked in interdisciplinary teams with an authentic audience (i.e., children) perceived higher quality in their projects and had higher levels of commitment to the task than their peers in the comparison group. A thematic analysis of the written reflections was conducted to further explain the results obtained for the three categories: expecting quality, satisfaction, and task commitment. The thematic analysis revealed that the treatment, or interdisciplinary, groups exhibited considerably more positive reflections than their comparison peers regarding the project in all three categories, supporting results obtained quantitatively. 
    more » « less
  4. Abstract Two project-based learning approaches were implemented in a 100-level information literacy class in the Mechanical Engineering program at a mid-Atlantic university. One approach, the treatment group, partnered engineering students with education students to develop and deliver engineering lessons that guide elementary school students through the engineering design process. In the second approach, the comparison group, engineering students were partnered with their engineering classmates to work on an engineering problem using the engineering design process. The two projects were designed to have similar durations and course point values. For both projects, teams were formed, and peer evaluations were completed, using the Comprehensive Assessment of Team Member Effectiveness (CATME) survey. This study examined how the two project-based learning approaches affected students' teamwork effectiveness. Data was collected from undergraduate engineering students assigned to groups in the comparison and treatment conditions from Fall 2019 to Fall 2022. Data was collected electronically through the CATME teammate evaluations and project reflections (treatment, n = 137; comparison, n = 112). CATME uses a series of questions assessed on a 5-point Likert scale. Quantitative analysis using Analysis of Variance (ANOVA) and Covariance (ANCOVA) showed that engineering students in the treatment group expected more quality, were more satisfied, and had more task commitment than engineering students working within their discipline. However, no statistically significant differences were observed for teamwork effectiveness categories such as contribution to the team’s work, interaction with teammates, keeping the team on track, and having relevant knowledge, skills, and abilities. This result suggests that engineering students who worked in interdisciplinary teams with an authentic audience (i.e., children) perceived higher quality in their projects and had higher levels of commitment to the task than their peers in the comparison group. A thematic analysis of the written reflections was conducted to further explain the results obtained for the three categories: expecting quality, satisfaction, and task commitment. The thematic analysis revealed that the treatment, or interdisciplinary, groups exhibited considerably more positive reflections than their comparison peers regarding the project in all three categories, supporting results obtained quantitatively. 
    more » « less
  5. This research paper investigates how individual change agents come together to form effective teams. Improving equity within academic engineering requires changes that are often too complex and too high-risk for a faculty member to pursue on their own. Teams offer the advantage of combining a diverse skill set of many individuals, as well as bringing together insider knowledge and external specialist expertise. However, in order for teams of academic change agents to function effectively, they must overcome the challenges of internal politics, power differentials, and group conflict. This analysis of team formation emerges from our participatory action research with recipients of the NSF Revolutionizing Engineering Departments (RED) grants. Through an NSF-funded collaboration between the University of Washington and Rose-Hulman Institute of Technoliogy, we work with the RED teams to research the process of change as they work to improve equity and inclusion within their institutions. Utilizing longitudinal qualitative data from focus group discussions with 16 teams at the beginning and midpoints of their projects, we examine the development of teams to transform engineering education. Drawing on theoretical frameworks from social movement theory, we highlight the importance of creating a unified team voice and developing a sense of group agency. Teams have a better chance of achieving their goals if members are able to create a unified voice—that is, a shared sense of purpose and vision for their team. We find that the development of a team’s unified voice begins with proposal writing. When members of RED teams did not collaboratively write the grant proposal, they found it necessary to devote more time to develop a sense of shared vision for their project. For many RED teams, the development of a unified voice was further strengthened through external messaging, as they articulated a “we” in opposition to a “they” who have different values or interests. Group agency develops as a result of team members perceiving their goals as attainable and their efforts, as both individuals and a group, as worthwhile. That is, group agency is dependent on both the credibility of the team as well as trust among team members. For some of the RED teams, the NSF requirement to include social scientists and education researchers on their teams gave the engineering team members new, increased exposure to these fields. RED teams found that creating mutual respect was foundational for working across disciplinary differences and developing group agency. 
    more » « less