Abstract Drones have emerged as a cost‐effective solution to detect and map plant invasions, offering researchers and land managers flexibility in flight design, sensors and data collection schedules. A systematic review of trends in drone‐based image collection, data processing and analytical approaches is needed to advance the science of invasive species monitoring and management and improve scalability and replicability.We systematically reviewed studies using drones for plant invasion research to identify knowledge gaps, best practices and a path toward advancing the science of invasive plant monitoring and management. We devised a database of 33 standardized reporting parameters, coded each study to those parameters, calculated descriptive statistics and synthesized how these technologies are being implemented and used.Trends show a general increase in studies since 2009 with a bias toward temperate regions in North America and Europe. Most studies have focused on testing the validity of a machine learning or deep learning image classification technique with fewer studies focused on monitoring or modelling spread. Very few studies used drones for assessing ecosystem dynamics and impacts such as determining environmental drivers or tracking re‐emergence after disturbance. Overall, we noted a lack of standardized reporting on field survey design, flight design, drone systems, image processing and analyses, which hinders replicability and scalability of approaches. Based on these findings, we develop a standard framework for drone applications in invasive species monitoring to foster cross‐study comparability and reproducibility.We suggest several areas for advancing the use of drones in invasive plant studies including (1) utilizing standardized reporting frameworks to facilitate scientific research practices, (2) integrating drone data with satellite imagery to scale up relationships over larger areas, (3) using drones as an alternative to in‐person ground surveys and (4) leveraging drones to assess community trait shifts tied to plant fitness and reproduction.
more »
« less
This content will become publicly available on April 1, 2026
Impact of Drone Disturbances on Wildlife: A Review
Drones are becoming increasingly valuable tools in wildlife studies due to their ability to access remote areas and offer high-resolution information with minimal human interference. Their application is, however, causing concern regarding wildlife disturbance. This review synthesizes the existing literature on how animals within terrestrial, aerial, and aquatic environments are impacted by drone disturbance in relation to operational variables, sensory stimulation, species-specific sensitivity, and physiological and behavioral responses. We found that drone altitude, speed, approach distance, and noise levels significantly influence wildlife responses, with some species exhibiting increased vigilance, flight responses, or physiological stress. Environmental context and visual cues are also involved in species detection of drones and disturbance thresholds. Although the short-term response to behavior change has been well documented, long-term consequences of repeated drone exposure remain poorly known. This paper identifies the necessity for continued research into drone–wildlife interactions, with an emphasis on the requirement to minimize disturbance by means of improved flight parameters and technology.
more »
« less
- Award ID(s):
- 2118240
- PAR ID:
- 10611534
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Drones
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2504-446X
- Page Range / eLocation ID:
- 311
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drones are receiving popularity with time due to their advanced mobility. Although they were initially deployed for military purposes, they now have a wide array of applications in various public and private sectors. Further deployment of drones can promote the global economic recovery from the COVID-19 pandemic. Even though drones offer a number of advantages, they have limited flying time and weight carrying capacity. Effective drone schedules may assist with overcoming such limitations. Drone scheduling is associated with optimization of drone flight paths and may include other features, such as determination of arrival time at each node, utilization of drones, battery capacity considerations, and battery recharging considerations. A number of studies on drone scheduling have been published over the past years. However, there is a lack of a systematic literature survey that provides a holistic overview of the drone scheduling problem, existing tendencies, main research limitations, and future research needs. Therefore, this study conducts an extensive survey of the scientific literature that assessed drone scheduling. The collected studies are grouped into different categories, including general drone scheduling, drone scheduling for delivery of goods, drone scheduling for monitoring, and drone scheduling with recharge considerations. A detailed review of the collected studies is presented for each of the categories. Representative mathematical models are provided for each category of studies, accompanied by a summary of findings, existing gaps in the state-of-the-art, and future research needs. The outcomes of this research are expected to assist the relevant stakeholders with an effective drone schedule design.more » « less
-
Abstract Pinniped species undergo uniquely amphibious life histories that make them valuable subjects for many domains of research. Pinniped research has often progressed hand‐in‐hand with technological frontiers of wildlife biology, and drones represent a leap forward for methods of aerial remote sensing, enabling data collection, and integration at new scales of biological importance. Drone methods and data types provide four key opportunities for wildlife surveillance that are already advancing pinniped research and management: 1) repeat and on‐demand surveillance, 2) high‐resolution coverage at large extents, 3) morphometric photogrammetry, and 4) computer vision and deep learning applications. Drone methods for pinniped research represent early stages of technological adoption and can reshape the field as they scale towards the full potential of their techniques.more » « less
-
Speed is essential in wildlife surveys due to the dynamic movement of animals throughout their environment and potentially extreme changes in weather. In this work, we present a multirobot path-planning method for conducting aerial surveys over large areas designed to make the best use of limited flight time. Unlike current survey path-planning solutions based on geometric patterns or integer programs, we solve a series of satisfiability modulo theory instances of increasing complexity. Each instance yields a set of feasible paths at each iteration and recovers the set of shortest paths after sufficient time. We implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of Cape Crozier, one of the largest Adélie penguin colonies in the world containing more than 300,000 nesting pairs. Over 2 square kilometers was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. Our method reduces survey time by limiting redundant travel while also allowing for safe recall of the drones at any time during the survey. Our approach can be applied to other domains, such as wildfire surveys in high-risk weather conditions or disaster response.more » « less
-
Drone simulators are often used to reduce training costs and prepare operators for various ad-hoc scenarios, as well as to test the quality of algorithmic and communication aspects in collaborative scenarios. An important aspect of drone missions in simulated (as well as real life) environments is the operational lifetime of a given drone, in both solo and collaborative fleet settings. Its importance stems from the fact that the capacity of the on-board batteries in untethered (i.e., free-flying) drones determines the range and/or the length of the trajectory that a drone can travel in the course of its surveilance or delivery missions. Most of the existing simulators incorporate some kind of a consumption model based on different parameters of the drone and its flight trajectory. However, to our knowledge, the existing simulators are not capable of incorporating data obtained from actual physical measurements/observations into the consumption model. In this work, we take a first step towards enabling the (users of) drones simulator to incorporate the speed and direction of the wind into the model and monitor its impact on the battery consumption as the direction of the flight changes relative to the wind. We have also developed a proof-of-concept implementation with DJI Mavic 3 and Parrot ANAFI drones.more » « less
An official website of the United States government
