skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Towards relations between Bloch–Kato Selmer groups and chromatic Selmer group
Award ID(s):
2001280
PAR ID:
10611573
Author(s) / Creator(s):
Publisher / Repository:
RIMS
Date Published:
Journal Name:
RIMS kokyuroku bessatsu
ISSN:
1881-6193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For an elliptic curve, we study how many Selmer groups are cotorsion over the anti-cyclotomic Z p \mathbb {Z}_p -extension as one varies the prime p p or the quadratic imaginary field in question. 
    more » « less
  2. Résumé Soit $$E/{\mathbb {Q}}$$ E / Q une courbe elliptique à multiplication complexe et p un nombre premier de bonne réduction ordinaire pour E . Nous montrons que si $${\mathrm{corank}}_{{\mathbb {Z}}_p}{\mathrm{Sel}}_{p^\infty }(E/{\mathbb {Q}})=1$$ corank Z p Sel p ∞ ( E / Q ) = 1 , alors E a un point d’ordre infini. Le point de non-torsion provient d’un point de Heegner, et donc $${{{\mathrm{ord}}}}_{s=1}L(E,s)=1$$ ord s = 1 L ( E , s ) = 1 , ce qui donne une réciproque à un théorème de Gross–Zagier, Kolyvagin, et Rubin dans l’esprit de [49, 54]. Pour $$p>3$$ p > 3 , cela donne une nouvelle preuve du résultat principal de [12], que notre approche étend à tous les nombres premiers. L’approche se généralise aux courbes elliptiques à multiplication complexe sur les corps totalement réels [4]. 
    more » « less
  3. Abstract We give new instances where Chabauty–Kim sets can be proved to be finite, by developing a notion of “generalised height functions” on Selmer varieties. We also explain how to compute these generalised heights in terms of iterated integrals and give the 1st explicit nonabelian Chabauty result for a curve $$X/\mathbb{Q}$$ whose Jacobian has Mordell–Weil rank larger than its genus. 
    more » « less