skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimal covers in the Weihrauch degrees
In this paper, we study the existence of minimal covers and strong minimal covers in the Weihrauch degrees. We characterize when a problem  f f is a minimal cover or strong minimal cover of a problem  h h . We show that strong minimal covers only exist in the cone below  i d id and that the Weihrauch lattice above  i d id is dense. From this, we conclude that the degree of i d id is first-order definable in the Weihrauch degrees and that the first-order theory of the Weihrauch degrees is computably isomorphic to third-order arithmetic.  more » « less
Award ID(s):
2053848
PAR ID:
10611589
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
152
Issue:
785
ISSN:
0002-9939
Page Range / eLocation ID:
4893 to 4901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  2. Suppose R R is a F F -finite and F F -pure Q \mathbb {Q} -Gorenstein local ring of prime characteristic p > 0 p>0 . We show that an ideal I ⊆<#comment/> R I\subseteq R is uniformly compatible ideal (with all p −<#comment/> e p^{-e} -linear maps) if and only if exists a module finite ring map R →<#comment/> S R\to S such that the ideal I I is the sum of images of all R R -linear maps S →<#comment/> R S\to R . In other words, the set of uniformly compatible ideals is exactly the set of trace ideals of finite ring maps. 
    more » « less
  3. Let R R be a standard graded algebra over a field. We investigate how the singularities of Spec ⁡<#comment/> R \operatorname {Spec} R or Proj ⁡<#comment/> R \operatorname {Proj} R affect the h h -vector of R R , which is the coefficient of the numerator of its Hilbert series. The most concrete consequence of our work asserts that if R R satisfies Serre’s condition ( S r ) (S_r) and has reasonable singularities (Du Bois on the punctured spectrum or F F -pure), then h 0 h_0 , …, h r ≥<#comment/> 0 h_r\geq 0 . Furthermore the multiplicity of R R is at least h 0 + h 1 + ⋯<#comment/> + h r −<#comment/> 1 h_0+h_1+\dots +h_{r-1} . We also prove that equality in many cases forces R R to be Cohen-Macaulay. The main technical tools are sharp bounds on regularity of certain Ext \operatorname {Ext} modules, which can be viewed as Kodaira-type vanishing statements for Du Bois and F F -pure singularities. Many corollaries are deduced, for instance that nice singularities of small codimension must be Cohen-Macaulay. Our results build on and extend previous work by de Fernex-Ein, Eisenbud-Goto, Huneke-Smith, Murai-Terai and others. 
    more » « less
  4. Motivated by recent work on optimal approximation by polynomials in the unit disk, we consider the following noncommutative approximation problem: for a polynomial f f in d d freely noncommuting arguments, find a free polynomial p n p_n , of degree at most n n , to minimize c n ‖<#comment/> p n f −<#comment/> 1 ‖<#comment/> 2 c_n ≔\|p_nf-1\|^2 . (Here the norm is the ℓ<#comment/> 2 \ell ^2 norm on coefficients.) We show that c n →<#comment/> 0 c_n\to 0 if and only if f f is nonsingular in a certain nc domain (the row ball), and prove quantitative bounds. As an application, we obtain a new proof of the characterization of polynomials cyclic for the d d -shift. 
    more » « less
  5. We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every M M -bundle over a manifold B B where dim ⁡<#comment/> ( B ) ≤<#comment/> dim ⁡<#comment/> ( M ) \operatorname {dim}(B)\leq \operatorname {dim}(M) is cobordant to a flat M M -bundle. In particular, we study the bordism class of flat M M -bundles over low dimensional manifolds, comparing a finite dimensional Lie group G G with D i f f 0 ( G ) \mathrm {Diff}_0(G)
    more » « less