skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 12, 2026

Title: Risk perception and locomotor performance in wild and captive primates
Research on primates’ aptitude for navigating fine, compliant, and oblique branches has often focused on their postcranial morphology and locomotor mechanics. Here we aim to understand how primates perceive risk and make informed judgments to move safely. We video-recorded and digitized the locomotion of four lemur species (Ranomafana National Park) and 3 cercopithecoid monkeys (Kibale National Park). We test the general hypothesis that primates should change their gaits and engage in exploratory behaviors – using touch and sight as guides – to increase stability in precarious settings. Augmenting our prior study showing that some lemurs change their locomotion when moving high in the canopy, we present new data on the behavior of wild lemurs and monkeys as they cross gaps between substrates or switch between locomotor modes. They frequently cross gaps and transition between modes without pause, meaning they can accurately gauge their locomotor capacity before moving onto a new substrate. In an investigation on four species of captive lemurs (Duke Lemur Center), we examine how variations in substrate diameter, orientation, and compliance influence the paths lemurs choose to take. Preliminary results suggest that lemurs will tend to avoid the most precarious substrates in their paths, and future analysis will examine the role that light availability plays as well. Overall, this research highlights the importance of risk perception for robust locomotor performance while moving in arboreal environments.  more » « less
Award ID(s):
2316841
PAR ID:
10611661
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Society of Integrative and Comparative Biology
Date Published:
ISSN:
1557-7023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Much research on primate locomotor performance in arboreal settings focuses on how primate morphology allows them to navigate substrates that vary in diameter, orientation, and compliance. However, little prior research has considered how these and other environmental factors - such as substrate height and light availability - may also affect locomotor behavior by altering how risky a given substrate is perceived to be. To investigate the relationship between risk perception and locomotor performance, we video-recorded four species of wild lemur (Ranomafana National Park), three species of wild cercopithecoid monkeys (Kibale National Park), and four species of captive lemur (Duke Lemur Center). We test the general hypothesis that primates should change their gaits and engage in exploratory behaviors – using touch and sight as guides – to increase stability in precarious settings. Augmenting our prior study showing that some lemurs change their locomotion when moving high in the canopy, we present new data showing that wild lemurs and monkeys frequently cross gaps between substrates and transition between locomotor modes without pause. In the investigation on captive lemurs, we examine whether variations in branch diameter, compliance, orientation, and light availability influence the paths lemurs choose to take. Preliminary results suggest that lemurs tend to avoid the most precarious substrates (i.e., the most narrow and compliant) regardless of lighting conditions. Overall, this research indicates that primates are able to make quick and accurate judgements about locomotor safety in the context of ongoing arboreal locomotion. 
    more » « less
  2. Abstract ObjectivesAn accident during arboreal locomotion can lead to risky falls, but it remains unclear that the extent to which primates, as adept arborealists, change their locomotion in response to the perceived risk of moving on high supports in the tree canopy. By using more stable forms of locomotion on higher substrates, primates might avoid potentially fatal consequences. Materials and MethodsUsing high‐speed cameras, we recorded the quadrupedal locomotion of four wild lemur species—Eulemur rubriventer,Eulemur rufifrons, Hapalemur aureus, and Lemur catta(N = 113 total strides). We quantified the height, diameter, and angular orientation of locomotor supports using remote sensors and tested the influence of support parameters on gait kinematics, specifically predicting that in response to increasing substrate height, lemurs would decrease speed and stride frequency, but increase stride length and the mean number of supporting limbs. ResultsLemurs did not adjust stride frequency on substrates of varying height. Adjustments to speed, stride length, and the mean number of supporting limbs in response to varying height often ran counter to predictions. OnlyE. rubriventerdecreased speed and increased the mean number of supporting limbs on higher substrates. DiscussionResults suggest that quadrupedal walking is a relatively safe form of locomotion for lemurs, requiring subtle changes in gait to increase stability on higher—that is, potentially riskier—substrates. Continued investigation of the impact of height on locomotion will be important to determine how animals assess risk in their environment and how they choose to use this information to move more safely. 
    more » « less
  3. Abstract Arboreal locomotion is precarious and places multiple challenges upon stability. Studies have shown that captive primates respond to narrower and steeper supports by flexing limb joints and adopting a compliant gait. We tested whether these same kinematic responses are adopted by wild primates freely ranging over a variety of supports in their natural habitats. We recorded five species of platyrrhines, five species of catarrhines, and four species of strepsirrhines with modified GoPro cameras and used remote measurement to quantify substrate characteristics. Video images were imported into ImageJ to measure the angular kinematics of limb joints during quadrupedal locomotion on a variety of arboreal supports. We statistically tested for associations between joint posture and substrate characteristics, and then disentangled the influence of phylogeny and substrate on limb joint kinematics using variation partitioning and redundancy analysis. Our results partially confirm previous kinematic studies and suggest variation in support orientation, more than diameter or compliance, influences quadrupedal gait kinematics. Phylogenetic relatedness explained more variation in the data than substrate properties. This suggests primates either prospectively choose relatively ‘safe’ substrates for locomotion, or that they possess locomotor adaptations independent of limb joint kinematics per se to overcome the challenges of the precarious arboreal environment. 
    more » « less
  4. Abstract Madagascar's lemurs are threatened by forest loss, fragmentation, and degradation. Many species use flexible behaviors to survive in degraded habitat, but their ability to persist in very small areas may be limited. Insular lemurs, like those found on Nosy Be, an island off the northwestern coast of Madagascar, are at heightened risk of sudden population declines and extirpation. Nosy Be is home to two Critically Endangered species—the endemic Nosy Be sportive lemur (Lepilemur tymerlachsoni) and Claire's mouse lemur (Microcebus mamiratra)—as well as the Endangered black lemur (Eulemur macaco). Most of the remaining forest on Nosy Be is protected by the 862‐ha Lokobe National Park. To document how Nosy Be lemurs use their restricted habitat, we conducted vegetation and reconnaissance surveys on 53 transects in and around Lokobe. We collected data on tree size, canopy cover, understory visibility, and elevation for 248 lemur sightings. We used a spatially explicit, multi‐species occupancy model to investigate which forest‐structure variables are important to lemurs. Our results represent some of the first data on habitat use by insular lemurs. Black lemurs preferred significantly larger trees and areas with less dense understory. They also occurred significantly less outside of Lokobe National Park, even when accounting for sampling effort and geography. The distributions of the sportive and mouse lemurs were not related to the forest structure variables we documented, but they did negatively predict each other—perhaps because their habitat requirements differ. These results also underscore the importance of the national park to protecting the black lemur population on Nosy Be and raise questions about what factors do influence the distribution of Nosy Be's smaller lemurs. Close monitoring is needed to prevent these populations and the ecosystem services they provide from disappearing, as have other island lemurs. 
    more » « less
  5. Abstract ObjectivesDespite qualitative observations of wild primates pumping branches before leaping across gaps in the canopy, most studies have suggested that support compliance increases the energetic cost of arboreal leaping, thus limiting leaping performance. In this study, we quantified branch pumping behavior and tree swaying in wild primates to test the hypothesis that these behaviors improve leaping performance. Materials and MethodsWe recorded wild colobine monkeys crossing gaps in the canopy and quantitatively tracked the kinematics of both the monkey and the compliant support during behavioral sequences. We also empirically measured the compliance of a sample of locomotor supports in the monkeys' natural habitat, allowing us to quantify the resonant properties of substrates used during leaping. ResultsAnalyses of three recordings show that adult red colobus monkeys (Piliocolobus tephrosceles) use branch compliance to their advantage by actively pumping branches before leaping, augmenting their vertical velocity at take‐off. Quantitative modeling of branch resonance periods, based on empirical measurements of support compliance, suggests that monkeys specifically employed branch pumping on relatively thin branches with protracted periods of oscillation. Finally, an additional four recordings show that both red colobus and black and white colobus monkeys (Colobus guereza) utilize tree swaying to cross large gaps, augmenting horizontal velocity at take‐off. DiscussionThis deliberate branch manipulation to produce a mechanical effect for stronger propulsion is consistent with the framework of instrumental problem‐solving. To our knowledge, this is the first study of wild primates which quantitatively shows how compliant branches can be used advantageously to augment locomotor performance. 
    more » « less