skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Yardangs sculpted by erosion of heterogeneous material
The recognizable shapes of landforms arise from processes such as erosion by wind or water currents. However, explaining the physical origin of natural structures is challenging due to the coupled evolution of complex flow fields and three-dimensional (3D) topographies. We investigate these issues in a laboratory setting inspired by yardangs, which are raised, elongate formations whose characteristic shape suggests erosion of heterogeneous material by directional flows. We combine experiments and simulations to test an origin hypothesis involving a harder or less erodible inclusion embedded in an outcropping of softer material. Optical scans of clay objects fixed within flowing water reveal a transformation from a featureless mound to a yardang-like form resembling a lion in repose. Phase-field simulations reproduce similar shape dynamics and show their dependence on the erodibility contrast and flow strength. Through visualizations of the flow fields and analysis of the local erosion rate, we identify effects associated with flow funneling and the turbulent wake that are responsible for carving the unique geometrical features. This highly 3D scouring process produces complex shapes from simple and commonplace starting conditions and is thus a candidate explanation for natural yardangs. The methods introduced here should be generally useful for geomorphological problems and especially those for which material heterogeneity is a primary factor.  more » « less
Award ID(s):
2206573
PAR ID:
10611770
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
121
Issue:
30
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The atmospheric ablation of meteoroids is a striking example of the reshaping of a solid object due to its motion through a fluid. Motivated by meteorite samples collected on Earth that suggest fixed orientation during flight—most notably the conical shape of so-called oriented meteorites—we hypothesize that such forms result from an aerodynamic stabilization of posture that may be achieved only by specific shapes. Here, we investigate this issue of flight stability in the parallel context of fluid mechanical erosion of clay bodies in flowing water, which yields shapes resembling oriented meteorites. We conduct laboratory experiments on conical objects freely moving through water and fixed within imposed flows to determine the dependence of orientational stability on shape. During free motion, slender cones undergo postural instabilities, such as inversion and tumbling, and broad or dull forms exhibit oscillatory modes, such as rocking and fluttering. Only intermediate shapes, including the stereotypical form carved by erosion, achieve stable orientation and straight flight with apex leading. We corroborate these findings with systematic measurements of torque and stability potentials across cones of varying apex angle, which furnish a complete map of equilibrium postures and their stability. By showing that the particular conical form carved in unidirectional flows is also posturally stable as a free body in flight, these results suggest a self-consistent picture for the origin of oriented meteorites. 
    more » « less
  2. Abstract In this research, we investigate multi-stimuli responsive multimaterial structures by combining shape memory polymers (SMPs) with magnetoactive fillers. Our objective is to design 3D-printed composites with local and global magnetoactive filler gradients, which exhibit complex shape actuation under magnetic and thermal fields. We first carry out a rheological study of SMP dispersions containing surface-treated magnetic particles to understand the effect of magnetic particle surface treatment, additives content, and shear rate on the complex flow behavior. Our findings reveal that dispersions filled with surface-treated magnetic particles exhibit enhanced shear thinning behavior and shape integrity compared to unfunctionalized dispersions. The improved rheological behavior and shape integrity are important results that indicate that PEG-functionalized SMP composites are promising candidates for direct ink printing. To create complex actuation, a 3D printing system is designed in a way that the magnetic particle-SMP dispersions are oriented using both shear and an external magnetic field, enabling a local angular gradient of magnetic particles. In addition, a global gradient is designed-in by varying the volume fraction of magnetic particles in the SMP suspensions. By adjusting the local and global gradients of magnetic particles within the SMP, different actuation patterns can be achieved. SEM analysis confirms the presence of the global gradient in iron oxide particles and their alignment along the magnetic field direction post-printing. Vibrating Sample Magnetometry (VSM) studies reveal an improved mass magnetization along the length of the printed samples, moving away from the printing origin. In addition, the iron oxide weight percent in the samples increases from 2.5 wt.% at the printing origin to 12.5wt.% at the end, creating a pronounced Fe3O4 global gradient. These findings contribute to the development of advanced stimuli-responsive materials with tunable properties for various applications where complex shape actuation is required, including soft robotics, and biomedical devices. 
    more » « less
  3. Abstract A new class of thin flexible structures is introduced that morph from flat into prescribed 3D shapes through strain mismatch between layers of a composite plate. To achieve control over the target shape, two different concepts are coupled. First, motivated by biological growth, strain mismatch is applied between the flat composite layers to transform it into a 3D shape. Depending on the amount of the applied strain mismatch, the transformation involves buckling into one of the available finite number of deformation modes. Second, inspired by kirigami, portions of the material are removed from one of the layers according to a specific pattern. This dramatically increases the number of possible 3D shapes and allows us to attain specific topologies. An experimental apparatus that allows precise control of the strain mismatch is devised. An inverse problem is posed, where starting from a given target shape, the physical parameters that make these shapes possible are determined. To show how the concept works, it focuses on circular composite plates and designs a kirigami pattern that yields a hemispherical structure. The analysis combines a theoretical approach with numerical simulations and physical experiments to understand and predict the shape transition from 2D to 3D. The tools developed here can be extended to attain arbitrary 3D shapes. The initially flat shape suggests that conventional additive manufacturing techniques can be used to functionalize the soft kirigami composite to fabricate, for example, deployable 3D structures, smart skins, and soft electromagnetic metasurfaces. 
    more » « less
  4. Abstract Conceptual design is the foundational stage of a design process, translating ill-defined design problems to low-fidelity design concepts and prototypes. While deep learning approaches are widely applied in later design stages for design automation, we see fewer attempts in conceptual design for three reasons: 1) the data in this stage exhibit multiple modalities: natural language, sketches, and 3D shapes, and these modalities are challenging to represent in deep learning methods; 2) it requires knowledge from a larger source of inspiration instead of focusing on a single design task; and 3) it requires translating designers’ intent and feedback, and hence needs more interaction with designers and/or users. With recent advances in deep learning of cross-modal tasks (DLCMT) and the availability of large cross-modal datasets, we see opportunities to apply these learning methods to the conceptual design of product shapes. In this paper, we review 30 recent journal articles and conference papers across computer graphics, computer vision, and engineering design fields that involve DLCMT of three modalities: natural language, sketches, and 3D shapes. Based on the review, we identify the challenges and opportunities of utilizing DLCMT in 3D shape concepts generation, from which we propose a list of research questions pointing to future research directions. 
    more » « less
  5. Abstract Two-dimensional (2D) growth-induced 3D shaping enables shape-morphing materials for diverse applications. However, quantitative design of 2D growth for arbitrary 3D shapes remains challenging. Here we show a 2D material programming approach for 3D shaping, which prints hydrogel sheets encoded with spatially controlled in-plane growth (contraction) and transforms them to programmed 3D structures. We design 2D growth for target 3D shapes via conformal flattening. We introduce the concept of cone singularities to increase the accessible space of 3D shapes. For active shape selection, we encode shape-guiding modules in growth that direct shape morphing toward target shapes among isometric configurations. Our flexible 2D printing process enables the formation of multimaterial 3D structures. We demonstrate the ability to create 3D structures with a variety of morphologies, including automobiles, batoid fish, and real human face. 
    more » « less