Abstract. We investigated preservice teachers’ (PSTs) (N=13) experiences in a science teaching inquiry group professional learning experience on integrating computational thinking (CT) into elementary science. A subgroup of PSTs (n=6) participated alongside their mentor teachers. The others (n=7) participated independently. Our research question was: To what extent, if any, did participating in a professional learning experience on CT along with their mentor teachers appear to enhance PSTs’ learning and practice related to CT integration? We analyzed evaluation feedback, interviews, participant-developed lesson plans, surveys, and attendance data. Findings suggested that participants in both groups reacted positively to the learning experience’s content and approach, and expressed similar perceptions of their CT integration knowledge. PSTs participating with their mentor teachers felt slightly more successful in their CT integration efforts, and perceived CT integration as more feasible in their teaching contexts. However, differences between the groups were minimal. We also noted possible of influence of PSTs’ perceptions of the districts in which they were teaching. Our findings underscore the importance of PSTs’ perceptions of their teaching contexts when bringing a new innovation to the classroom - namely, perceptions of their mentors and curricula as supportive of the innovation. Through this ongoing work, we seek to identify empirically-supported strategies for preparing PSTs to integrate CT into their future classrooms.
more »
« less
This content will become publicly available on June 13, 2026
Integrating CT in Science Methods: Advancing Practice and Pedagogy
Despite the importance of computational thinking (CT) as a problem-solving process (Wing, 2008) and the growing spread in teacher education (Yadav et al., 2017), existing initiatives for preservice teachers (PSTs) tend to focus on the computer science domain without making explicit connections to disciplinary classroom settings and promoting critical perspectives. As a cohesive unit, this learning representation aims to assist PSTs in integrating CT into their work as they design and implement science-focused lessons.Centered around a contextual issue: accessing, growing, and sustaining food, this learning representation employs 2D and 3D block-based programming languages coupled with unplugged activities that demonstrate CT practices, processes, and concepts. PSTs’ group designs, lesson modifications, and full lesson plans provide opportunities for assessment.
more »
« less
- Award ID(s):
- 2451843
- PAR ID:
- 10611921
- Publisher / Repository:
- Association for Educational Communications and Technology (AECT)
- Date Published:
- Journal Name:
- Journal of Technology-Integrated Lessons and Teaching
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2836-2578
- Page Range / eLocation ID:
- 20 to 33
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study examines pre-service teachers’ (PSTs) beliefs and understandings about computational thinking (CT) integration and lesson implementation over time. Utilizing a design-based research approach, 3 PSTs led the co-design of integrated CT lessons with support from researchers and enacted these CT integrated lessons with K-5 students. All PSTs participated in a whole-group CT workshop and engaged in one-on-one lesson design sessions with a researcher. We utilized a grounded theory approach to qualitatively analyze pre-surveys, semi-structured interviews, and video data of three PSTs enacting their lessons. We found that PSTs’ initial beliefs about CT instruction – including the importance of it – were reinforced through their participation in our lesson design and implementation process. We also saw PSTs developed deeper understandings and more nuanced beliefs about the importance of CT integration and supporting multilingual learners (MLs) with English language development (ELD) strategies. PSTs also developed beliefs about what CT integration should look like and how it should be taught. This multiple case study demonstrates how providing rich design opportunities for PSTs to engage in CT integration work can support the productive development of PSTs beliefs about CT integration and their capacity for CT lesson design.more » « less
-
Computational tools, and the computational thinking (CT) involved in their use, are pervasive in science, supporting and often transforming scientific understanding. Yet, longstanding disparities in access to learning opportunities means that CT’s growing role risks deepening persistent inequities in STEM [2]. To address this problem, our team developed and studied two 10-lesson instructional units for middle school science classrooms, each designed to challenge persistent barriers to equitable participation in STEM. The units aim to position coding as a tool for doing science, and ultimately, encourage a broader range of students, and females in particular, to identify as programmers. Students who participated (n=391) in a recent study of the units demonstrated statistically significant learning gains, as measured on an external assessment of CT. Learning gains were particularly pronounced for female students. Findings suggest that students can develop CT through instruction that foregrounds science, and in ways that lead to more equitable outcomes.more » « less
-
Christiansen, I (Ed.)Despite the importance of reasoning and proving in mathematics and mathematics education, little is known about how future teachers become proficient in integrating reasoning and proving in their teaching practices. In this article, we characterize this aspect of prospective secondary mathematics teachers’ (PSTs’) professional learning by drawing upon the commognitive theory. We offer a triple-layer conceptualization of (student)learning,teaching, andlearning to teachmathematics via reasoning and proving by focusing on the discourses students participate in (learning), the opportunities for reasoning and proving afforded to them (teaching), and how PSTs design and enrich such opportunities (learning to teach). We explore PSTs’ pedagogical discourse anchored in the lesson plans they designed, enacted, and modified as part of their participation in a university-based course:Mathematical Reasoning and Proving for Secondary Teachers. We identified four types of discursive modifications: structural, mathematical, reasoning-based, and logic-based. We describe how the potential opportunities for reasoning and proving afforded to students by these lesson plans changed as a result of these modifications. Based on our triple-layered conceptualization we illustrate how the lesson modifications and the resulting alterations to student learning opportunities can be used to characterize PSTs’ professional learning. We discuss the affordances of theorizing teacher practices with the same theoretical lens (grounded in commognition) to inquire student learning and teacher learning, and how lesson plans, as a proxy of teaching practices, can be used as a methodological tool to better understand PSTs’ professional learning.more » « less
-
Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact.more » « less
An official website of the United States government
