Abstract Entropic Brenier maps are regularized analogues of Brenier maps (optimal transport maps) which converge to Brenier maps as the regularization parameter shrinks. In this work, we prove quantitative stability bounds between entropic Brenier maps under variations of the target measure. In particular, when all measures have bounded support, we establish the optimal Lipschitz constant for the mapping from probability measures to entropic Brenier maps. This provides an exponential improvement to a result of Carlier, Chizat, and Laborde (2024). As an application, we prove near-optimal bounds for the stability of semi-discrete unregularized Brenier maps for a family of discrete target measures.
more »
« less
This content will become publicly available on May 22, 2026
Persistent homology of function spaces
We can view the Lipschitz constant as a height function on the space of maps between two manifolds and ask (as Gromov did nearly 30 years ago) what its ``Morse landscape'' looks like: are there high peaks, deep valleys and mountain passes? A simple and relatively well-studied version of this question: given two points in the same component (homotopic maps), does a path between them (a homotopy) have to pass through maps of much higher Lipschitz constant? Now we also consider similar questions for higher-dimensional cycles in the space. We make this precise using the language of persistent homology and give some first results.
more »
« less
- Award ID(s):
- 2235451
- PAR ID:
- 10611969
- Publisher / Repository:
- arXiv:2505.16907
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Lipschitz constant of the map between the input and output space represented by a neural network is a natural metric for assessing the robustness of the model. We present a new method to constrain the Lipschitz constant of dense deep learning models that can also be generalized to other architectures. The method relies on a simple weight normalization scheme during training that ensures the Lipschitz constant of every layer is below an upper limit specified by the analyst. A simple monotonic residual connection can then be used to make the model monotonic in any subset of its inputs, which is useful in scenarios where domain knowledge dictates such dependence. Examples can be found in algorithmic fairness requirements or, as presented here, in the classification of the decays of subatomic particles produced at the CERN Large Hadron Collider. Our normalization is minimally constraining and allows the underlying architecture to maintain higher expressiveness compared to other techniques which aim to either control the Lipschitz constant of the model or ensure its monotonicity. We show how the algorithm was used to train a powerful, robust, and interpretable discriminator for heavy-flavor-quark decays, which has been adopted for use as the primary data-selection algorithm in the LHCb real-time data-processing system in the current LHC data-taking period known as Run 3. In addition, our algorithm has also achieved state-of-the-art performance on benchmarks in medicine, finance, and other applications.more » « less
-
Hypergraphs capture multi-way relationships in data, and they have consequently seen a number of applications in higher-order network analysis, computer vision, geometry processing, and machine learning. In this paper, we develop theoretical foundations for studying the space of hypergraphs using ingredients from optimal transport. By enriching a hypergraph with probability measures on its nodes and hyperedges, as well as relational information capturing local and global structures, we obtain a general and robust framework for studying the collection of all hypergraphs. First, we introduce a hypergraph distance based on the co-optimal transport framework of Redko et al. and study its theoretical properties. Second, we formalize common methods for transforming a hypergraph into a graph as maps between the space of hypergraphs and the space of graphs, and study their functorial properties and Lipschitz bounds. Finally, we demonstrate the versatility of our Hypergraph Co-Optimal Transport (HyperCOT) framework through various examples.more » « less
-
A quasiconformal tree is a doubling metric tree in which the diameter of each arc is bounded above by a fixed multiple of the distance between its endpoints. In this paper we show that every quasiconformal tree bi-Lipschitz embeds in some Euclidean space, with the ambient dimension and the bi-Lipschitz constant depending only on the doubling and bounded turning constants of the tree. This answers Question 1.6 of David and Vellis [Illinois J. Math. 66 (2022), pp. 189–244].more » « less
-
We introduce and study the notion of *an outer bi-Lipschitz extension* of a map between Euclidean spaces. The notion is a natural analogue of the notion of *a Lipschitz extension* of a Lipschitz map. We show that for every map f there exists an outer bi-Lipschitz extension f′ whose distortion is greater than that of f by at most a constant factor. This result can be seen as a counterpart of the classic Kirszbraun theorem for outer bi-Lipschitz extensions. We also study outer bi-Lipschitz extensions of near-isometric maps and show upper and lower bounds for them. Then, we present applications of our results to prioritized and terminal dimension reduction problems, described next. We prove a *prioritized* variant of the Johnson–Lindenstrauss lemma: given a set of points X⊂ ℝd of size N and a permutation (”priority ranking”) of X, there exists an embedding f of X into ℝO(logN) with distortion O(loglogN) such that the point of rank j has only O(log3 + ε j) non-zero coordinates – more specifically, all but the first O(log3+ε j) coordinates are equal to 0; the distortion of f restricted to the first j points (according to the ranking) is at most O(loglogj). The result makes a progress towards answering an open question by Elkin, Filtser, and Neiman about prioritized dimension reductions. We prove that given a set X of N points in ℜd, there exists a *terminal* dimension reduction embedding of ℝd into ℝd′, where d′ = O(logN/ε4), which preserves distances ||x−y|| between points x∈ X and y ∈ ℝd, up to a multiplicative factor of 1 ± ε. This improves a recent result by Elkin, Filtser, and Neiman. The dimension reductions that we obtain are nonlinear, and this nonlinearity is necessary.more » « less
An official website of the United States government
