skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Nonlinear dimension reduction via outer Bi-Lipschitz extensions
We introduce and study the notion of *an outer bi-Lipschitz extension* of a map between Euclidean spaces. The notion is a natural analogue of the notion of *a Lipschitz extension* of a Lipschitz map. We show that for every map f there exists an outer bi-Lipschitz extension f′ whose distortion is greater than that of f by at most a constant factor. This result can be seen as a counterpart of the classic Kirszbraun theorem for outer bi-Lipschitz extensions. We also study outer bi-Lipschitz extensions of near-isometric maps and show upper and lower bounds for them. Then, we present applications of our results to prioritized and terminal dimension reduction problems, described next. We prove a *prioritized* variant of the Johnson–Lindenstrauss lemma: given a set of points X⊂ ℝd of size N and a permutation (”priority ranking”) of X, there exists an embedding f of X into ℝO(logN) with distortion O(loglogN) such that the point of rank j has only O(log3 + ε j) non-zero coordinates – more specifically, all but the first O(log3+ε j) coordinates are equal to 0; the distortion of f restricted to the first j points (according to the ranking) is at most O(loglogj). The result makes a progress towards answering an open question by Elkin, Filtser, and Neiman about prioritized dimension reductions. We prove that given a set X of N points in ℜd, there exists a *terminal* dimension reduction embedding of ℝd into ℝd′, where d′ = O(logN/ε4), which preserves distances ||x−y|| between points x∈ X and y ∈ ℝd, up to a multiplicative factor of 1 ± ε. This improves a recent result by Elkin, Filtser, and Neiman. The dimension reductions that we obtain are nonlinear, and this nonlinearity is necessary.  more » « less
Award ID(s):
1718820
PAR ID:
10066349
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nonlinear dimension reduction via outer Bi-Lipschitz extensions
Page Range / eLocation ID:
1088 to 1101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Buchin, Kevin; Colin de Verdiere, Eric (Ed.)
    In this paper, we prove a two-sided variant of the Kirszbraun theorem. Consider an arbitrary subset X of Euclidean space and its superset Y. Let f be a 1-Lipschitz map from X to ℝ^m. The Kirszbraun theorem states that the map f can be extended to a 1-Lipschitz map ̃ f from Y to ℝ^m. While the extension ̃ f does not increase distances between points, there is no guarantee that it does not decrease distances significantly. In fact, ̃ f may even map distinct points to the same point (that is, it can infinitely decrease some distances). However, we prove that there exists a (1 + ε)-Lipschitz outer extension f̃:Y → ℝ^{m'} that does not decrease distances more than "necessary". Namely, ‖f̃(x) - f̃(y)‖ ≥ c √{ε} min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) for some absolutely constant c > 0. This bound is asymptotically optimal, since no L-Lipschitz extension g can have ‖g(x) - g(y)‖ > L min(‖x-y‖, inf_{a,b ∈ X} (‖x - a‖ + ‖f(a) - f(b)‖ + ‖b-y‖)) even for a single pair of points x and y. In some applications, one is interested in the distances ‖f̃(x) - f̃(y)‖ between images of points x,y ∈ Y rather than in the map f̃ itself. The standard Kirszbraun theorem does not provide any method of computing these distances without computing the entire map ̃ f first. In contrast, our theorem provides a simple approximate formula for distances ‖f̃(x) - f̃(y)‖. 
    more » « less
  2. The Decomposition Problem in the class $$LIP(\S^2)$$ is to decompose any bi-Lipschitz map $$f:\S^2 \to \S^2$$ as a composition of finitely many maps of arbitrarily small isometric distortion. In this paper, we construct a decomposition for certain bi-Lipschitz maps which spiral around every point of a Cantor set $$X$$ of Assouad dimension strictly smaller than one. These maps are constructed by considering a collection of Dehn twists on the Riemann surface $$\S^2 \setminus X$$. The decomposition is then obtained via a bi-Lipschitz path which simultaneously unwinds these Dehn twists. As part of our construction, we also show that $$X \subset \S^2$$ is uniformly disconnected if and only if the Riemann surface $$\S^2 \setminus X$$ has a pants decomposition whose cuffs have hyperbolic length uniformly bounded above, which may be of independent interest. 
    more » « less
  3. We study the design of embeddings into Euclidean space with outliers. Given a metric space (X, d) and aninteger k, the goal is to embed all but k points in X (called the “outliers”) into ℓ2 with the smallest possibledistortion c. Finding the optimal distortion c for a given outlier set size k, or alternately the smallest k fora given target distortion c are both NP-hard problems. In fact, it is UGC-hard to approximate k to withina factor smaller than 2 even when the metric sans outliers is isometrically embeddable into ℓ2. We considerbi-criteria approximations. Our main result is a polynomial time algorithm that approximates the outlier setsize to within an O(log2 k) factor and the distortion to within a constant factor.The main technical component in our result is an approach for constructing Lipschitz extensions ofembeddings into Banach spaces (such as ℓp spaces). We consider a stronger version of Lipschitz extensionthat we call a nested composition of embeddings: given a low distortion embedding of a subset S of the metricspace X, our goal is to extend this embedding to all of X such that the distortion over S is preserved, whereasthe distortion over the remaining pairs of points in X is bounded by a function of the size of X \ S. Priorwork on Lipschitz extension considers settings where the size of X is potentially much larger than that of Sand the expansion bounds depend on |S|. In our setting, the set S is nearly all of X and the remaining setX \ S, a.k.a. the outliers, is small. We achieve an expansion bound that is polylogarithmic in |X \ S|. 
    more » « less
  4. Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic complexity, and the ratio of the length of the longest simple path to the the length of the shortest edge is poly(n). In the drawing f, a path P of G, or its image in the drawing π = f(P), is β-stretch if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P , the length of the sub-curve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥ denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short), in which we are given a pair of vertices s and t of G, and we are to decide whether in the given drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists. The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerrymandering regions in a map, where edges of G represent natural geographical/political boundaries that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show that the extension is closely related to several studied measures of local fatness of geometric shapes. We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs a β-stretch path between s and t, if a (1 − ε)β-stretch path between s and t exists in the drawing. 
    more » « less
  5. In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves. 
    more » « less