The urgent need for the decarbonization of power girds has accelerated the integration of renewable energy. Con-currently the increasing distributed energy resources (DER) and advanced metering infrastructures (AMI) have transformed the power grids into a more sophisticated cyber-physical system with numerous communication devices. While these transitions provide economic and environmental value, they also impose increased risk of cyber attacks and operational challenges. This paper investigates the vulnerability of the power grids with high renewable penetration against an intraday false data injection (FDI) attack on DER dispatch signals and proposes a kernel support vector regression (SVR) based detection model as a countermeasure. The intraday FDI attack scenario and the detection model are demonstrated in a numerical experiment using the HCE 187-bus test system. 
                        more » 
                        « less   
                    
                            
                            A Natural Watermarking Approach to Cyber Attack Detection for Power Electronics- Interfaced Renewables
                        
                    
    
            This paper introduces a novel approach to detecting cyber attacks for power electronics-interfaced renewable resources, e.g., solar panels. The approach leverages the inherent variability of renewable energy generation to watermark the measurements of renewable resources that are vulnerable to false data injection (FDI) attacks. By checking the existence of the watermarks imprinted by the natural fluctuations of renewables, false data injection attacks can be detected. Compared with the conventional watermarking methods, the proposed approach does not require additional noise injection which compromises control performance. The effectiveness of the proposed approach is validated by simulating a solar photovoltaic system. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2328205
- PAR ID:
- 10611984
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-2103-5
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- El Paso, TX, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This article investigates the impacts of coordinated false data injection attacks (FDIAs) on voltage profiles in smart microgrids integrated with renewable-based distributed energy resources (DERs), a critical component of urban energy infrastructure in smart cities. By leveraging simulation and experimental methods, a coordinated framework is developed for understanding and mitigating these threats, ensuring the stability of renewable-based DERs integral to modern urban systems. In the examined framework, a team of attackers independently identify the optimal times of two different cyberattacks leading to undervoltage and overvoltage in a smart microgrid. The objective function of each model is to increase the voltage violation in the form of either overvoltage or undervoltage caused by the corresponding FDIA. In such a framework, the attackers design a multi-objective optimization problem (MOOP) simultaneously resulting in voltage violations in the most vulnerable regions of the targeted microgrid. Considering the conflict between objective functions in the developed MOOP, a Pareto-based solution methodology is utilized to obtain a set of optimal solutions, called non-dominated solutions, as well as the best compromise solution (BCS). The effectiveness of the unified FDIA is verified based on simulation and experimental validations. In this regard, the IEEE 13-node test feeder has been modified as a microgrid for the simulation analysis, whereas the experimental validation has been performed on a lab-scale hybrid PV/wind microgrid containing renewable energy resources.more » « less
- 
            Cyber Physical Systems (CPS) consist of integration of cyber and physical spaces through computing, communication, and control operations. In vehicular CPS, modern vehicles with multiple Electronic Control Units (ECUs) and networking with other vehicles help autonomous driving. Vehicular CPS is vulner-able to multitude of cyber attacks, including false data injection attacks. This paper presents an Asynchronous Federated Learning (AFL) with a Gated Recurrent Unit (GRU) model for identifying False Data Injection (FDI) attacks in a VCPS. The AFL model continuously monitors the network and constructs a digital twin using the data obtained from a VCPS for intrusion detection. The proposed model is evaluated using different evaluation metrics. Numerical results show that the AFL model outperforms other existing models.more » « less
- 
            Secure vehicular communication is a critical factor for secure traffic management. Effective security in intelligent transportation systems (ITS) requires effective and timely intrusion detection systems (IDS). In this paper, we consider false data injection attacks and distributed denial-of-service (DDoS) attacks, especially the stealthy DDoS attacks, targeting integrity and availability, respectively, in vehicular ad-hoc networks (VANET). Novel machine learning techniques for intrusion detection and mitigation based on centralized communications through roadside units (RSU) are proposed for the considered attacks. The performance of the proposed methods is evaluated using a traffic simulator and a real traffic dataset. Comparisons with the state-of-the-art solutions clearly demonstrate the superior detection and localization performance of the proposed methods by 78% in the best case and 27% in the worst case, while achieving the same level of false alarm probability.more » « less
- 
            False data injection (FDI) attacks targeting under-load tap changing (ULTC) transformers pose a significant threat to smart distribution networks by exploiting vulnerabilities in the volt-var optimization (VVO) process, leading to potential undervoltage and voltage collapse. The increased integration of renewable energy and cyber-physical systems has expanded the attack surface, making traditional detection methods inadequate. For example, in 2023, attacks on utilities and decentralized components in the United States rose by 200%, with overall cyber threats increasing by 104%, highlighting growing vulnerabilities in distribution systems. To this end, this article proposes a two-stage remediation framework for decentralized FDI (DFDI) attacks targeting ULTC transformers. In the attack stage, vulnerabilities in ULTCs and voltage regulators are scrutinized, risking voltage collapse or blackouts in the distribution system. In the remediation stage, the distribution system operator focuses on non-attacked ULTCs, voltage regulators, distributed generation (DG) units, and smart homes to minimize reliance on compromised components. In this regard, a distinctive formulation of distribution network resilience and load management (DNRLM) problem is introduced to identify a resilient network topology and determine a situational power balance strategy. The proposed framework focuses on minimizing the system's reliance on the attacked ULTCs and voltage regulator components, thereby avoiding the intended voltage collapse caused by such DFDIs. The simulation results verify that the proposed method reduces the voltage collapse proximity index by over 60%, enhancing system resilience under DFDI attacks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    