skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cognitive discourse during a group quiz activity in a blended learning organic chemistry course
Abstract Student-centered approaches are critical to improving outcomes in STEM courses. Collaborative learning, in particular, allows students to co-construct understanding of concepts and refine their skills in analyzing and applying information. For collaborative learning to be effective, groups must engage in productive dialogue. The work reported here characterizes the quality of dialogue during group quizzes in a first-semester organic chemistry course. The group quiz sessions were video and audio recorded. The recordings were transcribed and coded using the Interactive, Constructive, Active, Passive (ICAP) framework. The quiz prompts were analyzed using Marzano’s taxonomy. In this study, students within the group demonstrated varying degrees of interactional quality as defined by the ICAP framework. Our data also indicate that the level of constructive and interactive dialogue is highest and most consistent when prompts are at Marzano Level 3 or higher. Marzano Level 3 prompts required students to compare and contrast concepts or extend their understanding of concepts by developing an analogy. Any benefit derived from collaborative learning depends on the quality of dialogue during the group discussion. Implications of these results for research and teaching are offered.  more » « less
Award ID(s):
1625414
PAR ID:
10612016
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Chemistry Teacher International
Volume:
5
Issue:
3
ISSN:
2569-3263
Page Range / eLocation ID:
245 to 261
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The level of students’ engagement during active learning activities conducted in small groups is important to understanding the effectiveness of these activities. The Interactive–Constructive–Active–Passive (ICAP) framework is a way to determine the cognitive engagement of these groups by analyzing the conversations that occur while student groups work on an activity. This study used qualitative content analysis and ICAP to investigate cognitive engagement during group activities in a General Chemistry course at the question level, a finer grain size than previously studied. The analysis determined the expected engagement based on question design and the observed engagement based on group conversations. Comparisons of expected and observed engagement showed cases of mismatch, and further analysis determined that incorrect model use, unfamiliar scientific vocabulary, and difficulty moving between molecular representations were all contributing themes to the observed mismatches. The implications of these findings with regard to teaching and research are discussed. 
    more » « less
  2. Understanding how individual students cognitively engage while participating in small group activities in a General Chemistry class can provide insight into what factors may be influencing their level of engagement. The Interactive-Constructive-Active-Passive (ICAP) framework was used to identify individual students’ level of engagement on items in multiple activities during a General Chemistry course. The effects of timing, group size, and question type on engagement were investigated. Results indicate students’ engagement varied more in the first half of the term, and students demonstrated higher levels of engagement when working in smaller groups or subsets of larger groups when these groups contained students with similar levels of knowledge. Finally, the relation between question type (algorithmic versus explanation) and engagement depended on the activity topic. In an activity on Solutions and Dilutions, there was a significant relation where algorithmic items had higher occurrences of Interactive engagement. The implications of this work regarding teaching and research are discussed. 
    more » « less
  3. Abstract Understanding students’ multi-party epistemic and topic based-dialogue contributions, or how students present knowledge in group-based chat interactions during collaborative game-based learning, offers valuable insights into group dynamics and learning processes. However, manually annotating these contributions is labor-intensive and challenging. To address this, we develop an automated method for recognizing dialogue acts from text chat data of small groups of middle school students interacting in a collaborative game-based learning environment. Our approach utilizes dual contrastive learning and label-aware data augmentation to fine-tune large language models’ underlying embedding representations within a supervised learning framework for epistemic and topic-based dialogue act classification. Results show that our method achieves a performance improvement of 4% to 8% over baseline methods in two key classification scenarios. These findings highlight the potential for automated dialogue act recognition to support understanding of how meaning-making occurs by focusing on the development and evolution of knowledge in group discourse, ultimately providing teachers with actionable insights to better support student learning. 
    more » « less
  4. Students face various challenges in organic chemistry, including learning complex organic chemistry concepts, applying them to solve problems, and navigating curved arrow notation to depict organic chemistry mechanisms. Given these challenges, many chemistry education practitioners and researchers have focused their efforts on implementing and assessing pedagogical practices that can produce positive outcomes for all students. In this chapter, we describe flipped classroom pedagogy as an evidence-based practice in organic chemistry that has improved student outcomes and addressed learning challenges in the course. We also review key aspects of this practice. In addition, we focus on group activities since they are a common component of flipped classrooms. We will present a case study that analyzes students' reasoning through dialogue when they were engaged in a group quiz activity that was a component of a flipped organic chemistry course. Through the results of this case study, we will make suggestions for how group activities can be implemented to improve students' reasoning skills in organic chemistry. 
    more » « less
  5. In this study we examined the first-time use of a miniaturized fluidized bed module in a chemical engineering classroom. Learning activities were developed to foster learning at the higher levels of Bloom's taxonomy and within the ICAP framework to provide interactive, constructive, and active engagement to promote a deeper understanding of concepts. A hands-on activity facilitated by a desktop-scale fluidized bed and reinforcing printed worksheet materials was deployed within a 50-minute class to encourage student engagement. Results from module performance tests compare well to predictions based on theoretical models suggesting this tool can effectively demonstrate fundamental concepts related to pressure loss in a packed bed, minimum fluidization velocity, constant pressure drop in a fluidized bed, bed expansion and repacking below a top screen. Pre- and Posttests 1 and 2 show student learning was significantly improved after pre-homework and the hands-on activity compared to the learning after the lecture alone. Student responses to two open-ended questions on Pre- and Posttests 1 and 2 allowed us to identify persisting student misconceptions about packed and fluidized beds. Suggestions for future work to repair these misconceptions are included in this study. 
    more » « less