skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 25, 2026

Title: Inverse initial data reconstruction for Maxwell's equations via time-dimensional reduction method
We study an inverse problem for the time-dependent Maxwell system in an inhomogeneous and anisotropic medium. The objective is to recover the initial electric field $$\mathbf{E}_0$$ in a bounded domain $$\Omega \subset \mathbb{R}^3$$, using boundary measurements of the electric field and its normal derivative over a finite time interval. Informed by practical constraints, we adopt an under-determined formulation of Maxwell's equations that avoids the need for initial magnetic field data and charge density information. To address this inverse problem, we develop a time-dimension reduction approach by projecting the electric field onto a finite-dimensional Legendre polynomial-exponential basis in time. This reformulates the original space-time problem into a sequence of spatial systems for the projection coefficients. The reconstruction is carried out using the quasi-reversibility method within a minimum-norm framework, which accommodates the inherent non-uniqueness of the under-determined setting. We prove a convergence theorem that ensures the quasi-reversibility solution approximates the true solution as the noise and regularization parameters vanish. Numerical experiments in a fully three-dimensional setting validate the method's performance. The reconstructed initial electric field remains accurate even with $$10\%$$ noise in the data, demonstrating the robustness and applicability of the proposed approach to realistic inverse electromagnetic problems.  more » « less
Award ID(s):
2208159
PAR ID:
10612300
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
preprint arXiv:2506.20777
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce a time-dimensional reduction method for the inverse source problem in linear elasticity, where the goal is to reconstruct the initial displacement and velocity fields from partial boundary measurements of elastic wave propagation. The key idea is to employ a novel spectral representation in time, using an orthonormal basis composed of Legendre polynomials weighted by exponential functions. This Legendre polynomial-exponential basis enables a stable and accurate decomposition in the time variable, effectively reducing the original space-time inverse problem to a sequence of coupled spatial elasticity systems that no longer depend on time. These resulting systems are solved using the quasi-reversibility method. On the theoretical side, we establish a convergence theorem ensuring the stability and consistency of the regularized solution obtained by the quasi-reversibility method as the noise level tends to zero. On the computational side, two-dimensional numerical experiments confirm the theory and demonstrate the method's ability to accurately reconstruct both the geometry and amplitude of the initial data, even under substantial measurement noise. The results highlight the effectiveness of the proposed framework as a robust and computationally efficient strategy for inverse elastic source problems. 
    more » « less
  2. We propose a globally convergent computational technique for the nonlinear inverse problem of reconstructing the zero-order coefficient in a parabolic equation using partial boundary data. This technique is called the ``reduced dimensional method.'' Initially, we use the polynomial-exponential basis to approximate the inverse problem as a system of 1D nonlinear equations. We then employ a Picard iteration based on the quasi-reversibility method and a Carleman weight function. We will rigorously prove that the sequence derived from this iteration converges to the accurate solution for that 1D system without requesting a good initial guess of the true solution. The key tool for the proof is a Carleman estimate. We will also show some numerical examples. 
    more » « less
  3. null (Ed.)
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced a priori knowledge about it. 
    more » « less
  4. We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using the quasi-reversibility method with a suitable Carleman weight function. The presence of the Carleman weight function allows us to employ a Carleman estimate to prove the convergence of the sequence generated by the iterative scheme above to the desired solution. The convergence of the iteration is fast at an exponential rate without the need of an initial good guess. We apply this method to compute solutions to some general quasilinear elliptic equations and a large class of first-order Hamilton-Jacobi equations. Numerical results are presented. 
    more » « less
  5. Abstract We formulate the two-dimensional gravity-capillary water wave equations in a spatially quasi-periodic setting and present a numerical study of solutions of the initial value problem. We propose a Fourier pseudo-spectral discretization of the equations of motion in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on a torus. We adopt a conformal mapping formulation and employ a quasi-periodic version of the Hilbert transform to determine the normal velocity of the free surface. Two methods of time-stepping the initial value problem are proposed, an explicit Runge–Kutta (ERK) method and an exponential time-differencing (ETD) scheme. The ETD approach makes use of the small-scale decomposition to eliminate stiffness due to surface tension. We perform a convergence study to compare the accuracy and efficiency of the methods on a traveling wave test problem. We also present an example of a periodic wave profile containing vertical tangent lines that is set in motion with a quasi-periodic velocity potential. As time evolves, each wave peak evolves differently, and only some of them overturn. Beyond water waves, we argue that spatial quasi-periodicity is a natural setting to study the dynamics of linear and nonlinear waves, offering a third option to the usual modeling assumption that solutions either evolve on a periodic domain or decay at infinity. 
    more » « less