skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 15, 2026

Title: Recovery of initial displacement and velocity in anisotropic elastic systems by the time dimensional reduction method
We introduce a time-dimensional reduction method for the inverse source problem in linear elasticity, where the goal is to reconstruct the initial displacement and velocity fields from partial boundary measurements of elastic wave propagation. The key idea is to employ a novel spectral representation in time, using an orthonormal basis composed of Legendre polynomials weighted by exponential functions. This Legendre polynomial-exponential basis enables a stable and accurate decomposition in the time variable, effectively reducing the original space-time inverse problem to a sequence of coupled spatial elasticity systems that no longer depend on time. These resulting systems are solved using the quasi-reversibility method. On the theoretical side, we establish a convergence theorem ensuring the stability and consistency of the regularized solution obtained by the quasi-reversibility method as the noise level tends to zero. On the computational side, two-dimensional numerical experiments confirm the theory and demonstrate the method's ability to accurately reconstruct both the geometry and amplitude of the initial data, even under substantial measurement noise. The results highlight the effectiveness of the proposed framework as a robust and computationally efficient strategy for inverse elastic source problems.  more » « less
Award ID(s):
2208159
PAR ID:
10612303
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
preprint arXiv:2506.13000
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study an inverse problem for the time-dependent Maxwell system in an inhomogeneous and anisotropic medium. The objective is to recover the initial electric field $$\mathbf{E}_0$$ in a bounded domain $$\Omega \subset \mathbb{R}^3$$, using boundary measurements of the electric field and its normal derivative over a finite time interval. Informed by practical constraints, we adopt an under-determined formulation of Maxwell's equations that avoids the need for initial magnetic field data and charge density information. To address this inverse problem, we develop a time-dimension reduction approach by projecting the electric field onto a finite-dimensional Legendre polynomial-exponential basis in time. This reformulates the original space-time problem into a sequence of spatial systems for the projection coefficients. The reconstruction is carried out using the quasi-reversibility method within a minimum-norm framework, which accommodates the inherent non-uniqueness of the under-determined setting. We prove a convergence theorem that ensures the quasi-reversibility solution approximates the true solution as the noise and regularization parameters vanish. Numerical experiments in a fully three-dimensional setting validate the method's performance. The reconstructed initial electric field remains accurate even with $$10\%$$ noise in the data, demonstrating the robustness and applicability of the proposed approach to realistic inverse electromagnetic problems. 
    more » « less
  2. We propose a globally convergent computational technique for the nonlinear inverse problem of reconstructing the zero-order coefficient in a parabolic equation using partial boundary data. This technique is called the ``reduced dimensional method.'' Initially, we use the polynomial-exponential basis to approximate the inverse problem as a system of 1D nonlinear equations. We then employ a Picard iteration based on the quasi-reversibility method and a Carleman weight function. We will rigorously prove that the sequence derived from this iteration converges to the accurate solution for that 1D system without requesting a good initial guess of the true solution. The key tool for the proof is a Carleman estimate. We will also show some numerical examples. 
    more » « less
  3. null (Ed.)
    This paper is concerned with the inverse scattering problem which aims to determine the spatially distributed dielectric constant coefficient of the 2D Helmholtz equation from multifrequency backscatter data associated with a single direction of the incident plane wave. We propose a globally convergent convexification numerical algorithm to solve this nonlinear and ill-posed inverse problem. The key advantage of our method over conventional optimization approaches is that it does not require a good first guess about the solution. First, we eliminate the coefficient from the Helmholtz equation using a change of variables. Next, using a truncated expansion with respect to a special Fourier basis, we approximately reformulate the inverse problem as a system of quasilinear elliptic PDEs, which can be numerically solved by a weighted quasi-reversibility approach. The cost functional for the weighted quasi-reversibility method is constructed as a Tikhonov-like functional that involves a Carleman Weight Function. Our numerical study shows that, using a version of the gradient descent method, one can find the minimizer of this Tikhonov-like functional without any advanced a priori knowledge about it. 
    more » « less
  4. Abstract This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial–exponential basis. This truncation effectively removes the time variable, transforming the problem into a system of quasi-linear elliptic equations. We refer to this technique as the ‘time dimensional reduction method.’ To numerically solve this system comprehensively without the need for an accurate initial estimate, we used the newly developed Carleman contraction principle. We show the efficiency of our method through various numerical examples. The time dimensional reduction method stands out not only for its precise solutions but also for its remarkable speed in computation. 
    more » « less
  5. This paper aims to reconstruct the initial condition of a hyperbolic equation with an unknown damping coefficient. Our approach involves approximating the hyperbolic equation’s solution by its truncated Fourier expansion in the time domain and using the recently developed polynomial-exponential basis. This truncation process facilitates the elimination of the time variable, consequently, yielding a system of quasi-linear elliptic equations. To globally solve the system without needing an accurate initial guess, we employ the Carleman contraction principle. We provide several numerical examples to illustrate the efficacy of our method. The method not only delivers precise solutions but also showcases remarkable computational efficiency. 
    more » « less