Abstract Bifunctional catalase‐peroxidase (KatG) features a posttranslational methionine‐tyrosine‐tryptophan (MYW) crosslinked cofactor crucial for its catalase function, enabling pathogens to neutralize hydrogen peroxide during infection. We discovered the presence of indole nitrogen‐linked hydroperoxyl adduct (MYW‐OOH) inMycobacterium tuberculosisKatG in the solution state under ambient conditions, suggesting its natural occurrence. By isolating predominantly MYW‐OOH‐containing KatG protein, we investigated the chemical stability and functional impact of MYW‐OOH. We discovered that MYW‐OOH inhibits catalase activity, presenting a unique temporary lock. Exposure to peroxide or increased temperature removes the hydroperoxyl adduct from the protein cofactor, converting MYW‐OOH to MYW and restoring the detoxifying ability of the enzyme against hydrogen peroxide. Thus, theN‐linked hydroperoxyl group is releasable. KatG with MYW‐OOH represents a catalase dormant, but primed, state of the enzyme. These findings provide insight into chemical strategies targeting the bifunctional enzyme KatG in pathogens, highlighting the role ofN‐linked hydroperoxyl modifications in enzymatic function.
more »
« less
This content will become publicly available on February 27, 2026
Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development
Mycobacterium tuberculosis (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis.
more »
« less
- Award ID(s):
- 2204225
- PAR ID:
- 10623859
- Editor(s):
- Cox, Michael M
- Publisher / Repository:
- Taylor & Francis Group
- Date Published:
- Journal Name:
- Critical Reviews in Biochemistry and Molecular Biology
- Volume:
- 59
- Issue:
- 6
- ISSN:
- 1040-9238
- Page Range / eLocation ID:
- 434 to 446
- Subject(s) / Keyword(s):
- Bifunctional enzymes drug activation mechanisms oxidative stress defense protein-derived cofactors redox regulation tuberculosis drug target
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Following hydrogen peroxide treatment, ferrous iron (Fe2+) is oxidized to its ferric form (Fe3+), stripping it from and inactivating iron-containing proteins. Many mononuclear iron enzymes can be remetallated by manganese to restore function, while other enzymes specifically utilize manganese as a cofactor, having redundant activities that compensate for iron-depleted counterparts. DNA replication relies on one or more iron-dependent protein(s) as synthesis abates in the presence of hydrogen peroxide and requires manganese in the medium to resume. Here, we show that manganese transporters regulate the ability to resume replication following oxidative challenge in Escherichia coli. The absence of the primary manganese importer, MntH, impairs the ability to resume replication; whereas deleting the manganese exporter, MntP, or transporter regulator, MntR, dramatically increases the rate of recovery. Unregulated manganese import promoted recovery even in the absence of Fur, which maintains iron homeostasis. Similarly, replication was not restored in oxyR mutants, which cannot upregulate manganese import following hydrogen peroxide stress. Taken together, the results define a central role for manganese transport in restoring replication following oxidative stress.more » « less
-
Sassetti, Christopher M. (Ed.)Mycobacterium tuberculosis ( Mtb ) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn 2+ ) availability as a likely driver of bacterial phenotypic heterogeneity in vivo . Zn 2+ sequestration is part of “nutritional immunity”, where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn 2+ -limitation is an environmental cue sensed by Mtb , as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn 2+ -limited Mtb in vivo . Prolonged Zn 2+ limitation leads to numerous physiological changes in vitro , including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn 2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn 2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn 2+ -limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn 2+ -limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn 2+ availability likely plays a key role during early interactions with host cells.more » « less
-
Champion, Patricia A (Ed.)ABSTRACT Tuberculosis is caused by the bacteriumMycobacterium tuberculosis(Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species,Mycobacterium smegmatis(Msm), perform the essential function of RNA synthesis, we performed a series ofin vitrotranscription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacteriumMycobacterium tuberculosis(Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie,et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.more » « less
-
null (Ed.)Nature utilizes self-assembled protein-based structures as subcellular compartments in prokaryotes to sequester catalysts for specialized biochemical reactions. These protein cage structures provide unique isolated environments for the encapsulated enzymes. Understanding these systems is useful in the bioinspired design of synthetic catalytic organelle-like nanomaterials. The DNA binding protein from starved cells (Dps), isolated from Sulfolobus solfataricus , is a 9 nm dodecameric protein cage making it the smallest known naturally occurring protein cage. It is naturally over-expressed in response to oxidative stress. The small size, natural biodistribution to the kidney, and ability to cross the glomerular filtration barrier in in vivo experiments highlight its potential as a synthetic antioxidant. Cytochrome C (CytC) is a small heme protein with peroxidase-like activity involved in the electron transport chain and also plays a critical role in cellular apoptosis. Here we report the encapsulation of CytC inside the 5 nm interior cavity of Dps and demonstrate the catalytic activity of the resultant Dps nanocage with enhanced antioxidant behavior. The small cavity can accommodate a single CytC and this was achieved through self-assembly of chimeric cages comprising Dps subunits and a Dps subunit to which the CytC was fused. For selective isolation of CytC containing Dps cages, we utilized engineered polyhistidine tag present only on the enzyme fused Dps subunits (6His-Dps-CytC). The catalytic activity of encapsulated CytC was studied using guaiacol and 3,3′,5,5′-tetramethylbenzidine (TMB) as two different peroxidase substrates and compared to the free (unencapsulated) CytC activity. The encapsulated CytC showed better pH dependent catalytic activity compared to free enzyme and provides a proof-of-concept model to engineer these small protein cages for their potential as catalytic nanoreactors.more » « less
An official website of the United States government
